CMOS Logic

ECE 320 Electronics I

Jake Glower - Lecture #24

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

CMOS Logic

TTL logic is used widely, but has a few limitations:

- The input impedance is not infinity. This limits the fanout.
- The corresponding power consumption is somewhat high (5mW computed previously).
- The maximum clock frequency is limited to about 1MHz (DTL) or 10MHz (TTL)

CMOS logic avoids these problems.

For the following circuits, assume

 $R_{ds} = 1\Omega$ @ Vgs = 5V

CMOS Inverter

Version 1: n-channel MOSFET.

- Whan $V_A = 0V$, the MOSFET is off. $R_{ds} = infinity$
- When $V_A = 5V$, the MOSFET is on: $R_{ds} = 1$ Ohm (approx)

V _A	R_{high}	R _{low}	Y
0V	1,000	infinity	+5V
5V	1,000	1 Ohm	0.005V

Note that this is an inverter:

$$Y = \overline{A}$$

Version 2: p-channel MOSFET

Whan $V_A = 5V (V_{gs} = 0V)$ • The MOSFET is off. $R_{ds} = infinity$ When $V_A = 0V (V_{gs} = -5V)$ • The MOSFET is on: $R_{ds} = 1$ Ohm (approx)

This results in the same table:

V _A	R _{high}	R _{low}	Y
0V	1 Ohm	1k	4.995 V
5V	infinity	1k	0.V

Again, note that this is an inverter

 $Y = \overline{A}$

Version 3: Actual CMOS Inverter

- Ids = 0
- One of the MOSFETs are always off

VA	Rhigh (T1)	Rlow (T2)	Y
0V	1 Ohm	infinity	5.00 V
5V	infinity	1 Ohm	0.00 V

- Note: There will be a slight current draw on 0/1 and 1/0 transistions
 - Both MOSFETs are on momentarily

Current Spikes

Like DTL and TTL logic, you get current spikes on 1/0 and 0/1 transitions

• Both MOSFETs momentarily on

Current is proprotional to clock speed with CMOS logic

CMOS NOR gate:

- Low side (n-channel)
 - $\overline{Y} = A + B + C$

$$Y = \overline{A + B + C}$$

High Side

- p-channel MOSFETs
- Related by DeMorgan's theorem
- Note that 0V is on, 5V is off on the high side

 $Y = \overline{A + B + C}$ $Y = \overline{A} \overline{B} \overline{C}$

Net Result:

- No current draw when on or off
- Spikes on 0/1 and 1/0 transistions

CMOS NAND gate:

Low Side:

- n-channel MOSFETs
 - $\overline{Y} = ABC$
 - $Y = \overline{ABC}$

High-Side

- p-channel MOSFETs
- Related by DeMorgan's theorem $Y = \overline{A} + \overline{B} + \overline{C}$

CMOS Combinational Logic:

You don't need to use NAND and NOR gates with CMOS logic

You can implement the entire funciton in one gate

- AND = series
- OR = parallel
- high-side and low-side are related by DeMorgan's theorem

CMOS Logic Example: $Y = \overline{AB} + \overline{C}$

- High-Side: $Y = \overline{A}\overline{B} + \overline{C}$
- Low-Side:

$$\overline{\overline{Y}} = \overline{\overline{A}\overline{B}} + \overline{\overline{C}}$$
$$\overline{\overline{Y}} = (A+B)C$$

Handout

Design a CMOS gate to implement the following logic

Solution:

 $\overline{Y} = ABC + ABD$

Summary

CMOS logic

- Draws zero current at logic level 0 or 1
- Can implement an entire funciton in one shot, and
- Is *much* faster than DTL or TTL logic

Current spikes happen at the 0/1 and 1/0 transistions

- Current is proportional to the clock frequency
- Keep digital sections of your circuit away from analog sections