Transistors ECE 320 Electronics I Jake Glower - Lecture #11

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

NPN Transistor Theory

Transistors are similar to diodes in that they are made up on n-type and p-type silicon. They differ in that

- Transistors are 3-terminal devices (NPN or PNP),
- Transistors can operate in three states: off, active, and saturated,
- Transistors can be used as a switch to turn a device on and off electrically, and
- Transistors can be used as an amplifier (a current controlled current amplifier).

NPN Transistor Operation

- A reverse biased diode (np) blocks current from emitter to collector:
- Base to emitter is a diode (pn junction)

If you apply current base to emitter

- Holes flow from the base to the emitter
- Electrons flow from the emitter to the base (to the collector)

If the emitter has 100x the doping of the base, you get current gain

An NPN device makes a transistor

The symbol for a transistor is as follows. Note that the arrow represents the diode from base to emitter. It reminds you which way current flows.

Symbol for an NPN transistor: the arrow indicated the diode from base to emitter

Transistor VI Characteristics:

Off:

Ib = Ic = 0Ic (mA) 160 Saturated lb = 1.4mA140 Active: Vce = 0.2Vlb = 1.2mA120 $I_c = \beta I_b$ Ib = 1.0mA $\beta = \frac{140mA}{1.4mA} = 100$ 100 **Active** Ib = 0.8mA80 Ic = B Iblb = 0.6mA60 Saturated: lb = 0.4mA40 $\beta I_b > I_c$ lb = 0.2mA20 $V_{ce} \approx 0.2V$ Off (Ice = 0)0 7 1 2 3 4 5 6 8 9 10 11 12 0

Vce (Volts)

Off State

• Ib = 0, Ic = 0

Active State: 0.2V < Vce < Vcc

$$I_c = \beta I_b.$$

Saturated State: $\beta I_b > I_c$

 $V_{ce} = 0.2V$

PNP Transistors:

- Note: The arrow represents a diode
- This current determines Ice (or Iec)

Transistor Specs

	3904	6144	TIP112
	NPN	NPN	NPN
hfe (beta)	100 - 300	200	1,000
lc (max)	200mA	10A	4A
Vbe	700mV	700mV	1.4V
Vce (max)	40V	50V	40V
Vce (sat)	200mV	360mV	900mV
cost (ea)	\$0.03	\$0.37	\$0.59

Handout

Transistor Circuit Analysis:

- a) Vin = 0.5V (Off State):
 - Ib = 0
 - Ic = 0
 - Vce = 12V

The transistor is off.

Off State in CircuitLab

- If Ib (or Ic) tries to go negative, it clips at 0
- Vc clips at +12V

Vin (blue) and Vc (orange) for a 1Vp sine wave centered at 0V. When Vc = 12V the transistor turns off.

Vb = 0.7V (diode is on)

$$I_b = \left(\frac{2V - 0.7V}{2k\Omega}\right) = 650 \mu A$$

 $I_c = \beta I_b = 65 m A$

$$V_{ce} = 12 - 100I_c = 5.5V$$

Active Region:

- Increase the DC offset of Vin (blue)
- Increases Ic (decreases Vc)

c) Vin = 3.5V (Saturated Region).

$$I_{b} = \left(\frac{3.5V - 0.7V}{2k\Omega}\right) = 1.4mA$$
$$I_{c} = \beta I_{b} = 140mA$$
$$V_{ce} = 12 - 100I_{c} = -2.0V$$

Not Possible

 $V_{ce} = 0.2V$ $I_c = \left(\frac{12V - 0.2V}{100}\right) = 118mA$

Permutations

N diodes in a circuit

+ 2^{N} permitations of on / off

N transistors in a circuit

• 3^{N} permitations of off / active / saturated

It helps to know the answer to find the answer

- ECE 320 Digital Electronics: Usually transistors are on or off
- ECE 321 Analog Electronics: Usually transisors are active

Handout

Summary

An npn or pnp device is a transistor.

Transistors have 3 modes of operation

• off / active / saturated

Results in 3ⁿ circuits to analyze

- n = number of transistors
- one of these circuits will be correct

On / Off is primarly used in digital electrionics Active is primarily used in analog electronics