NDSU Complex Numbers and Phasors

ECE 320

Complex Numbers and Phasors

Complex Numbers:

Define
j=-1
j=-1

Also define the complex exponential:
e”® =cosB+;sin0

A complex number has two terms: a real part and a complex part:

X=a+jb
You can also represent this in polar form:
X=rZ0
which is short-hand notation for
X=r e
imag
A
a+jb
ib
.
b
a a =real

Rectangular form ( a + jb ) and polar form r£0 of a complex number

You can convert from polar to rectangular form with
a=r-cos0
b=r-sin®

and from rectangular to polar form with
r=ya*+b?

0 = arctan (%)
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A few more definitions:
real(a+jb)=a
imag(a+jb)=>b
|lrz0| =7 ( magnitude )
Z(r£0)=0 (angle )

Complex Conjugate: Change the sign of the complex part
(a+jb)" = (a=jb)

A number times its complex conjugate is the magnitude squared:
(a+jb)a—jb) = a®—jab + jba —j*b*

=a*+b?
=72

Complex Algebra:

Addition and Subtraction: When adding complex numbers, the real part adds and the complex part adds:
(a+jb)+(c+jd)y=(a+c)+jb+d)
(a+jb)—(c+jd)=(a—c)+j(b-d)

Addition and subtraction is much easier in rectangular form. For example:

BG+2)+(1+j3)=6+5

I

i5f

F 14j3
i3 : 6+j5

Addition of complex numbers
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Multiplication: In rectangular form:

(a+jb)- (c+jd) =ac+jad+jbc+j>bd
= (ac—bd) + j(ad + bc)

In polar form:
(r1£01) - (r2£02) = r1r2£(01 +6,)

Polar form is much simpler: when multiplying complex numebers:

+ The magnitude multiplies

The angles add
Example:
(3 +j1)(2+/1) = (3.16£18.4°)(2.23.£26.6°)
=7.07.£45°
=5+/5
o
i5 i1 2 ang(ql + 2)
4
4
| lilid
] § rt *ang(q1)

Multiplication

Division: In rectangular form:
(a+jb) _ (a+jb) (c—jd)
cHd) — \c+jd c—jd

( (ac—bd)+j(be—ad) )

c2+d?

ac=bd .[ bc—ad
(cz+d2 ) —i_‘](czﬂi2 )
In polar form:

(%) = (%) £(01-96>)

Polar form is much simpler: when dividing complex numebers:

The magnitude divides
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« The angles subtract

Example: Simplify the following

_ 2s+3
Y= ((s+3)(s+4)) =3

Solution: A calculator that does complex numbers really helps:
_ ( 2(j3)+3 )
T \(343)(j3+4)
_ ( 346 )
T \3+21

=0.3-j0.1

Euler's Identity: From
e = cos(x) +j sin(x)

you can derive Euler's Identity:

cos(x) = <—e’x+2 e_”)

sin(x) = (—‘f”;;’_”)

A cosine function is composed of a complex exponential and its compex conjugate

This is important when you get to communications: when you broadcast an audio signal, you actually send two
signals: the audio signal and its complex conjugate (requiring twice the bandwidth and twice the power).
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Phasors:

Phasors are a way to

+ Represent a sine wave with a single complex number, and
» Represent the impedance of capacitors and inductors for sinusoidal inputs.

Phasors and Sine Waves

From the definition of a complex exponential
e/ = cos(wr) +j sin(ox)
you can represent a generalized sine wave as
(a+jb)e’® = (a+ jb)(cos(wr) +j sin(wr))
= (acos (t) — b sin (wr)) + j(b cos (o) + a sin (wr))
Taking the real part (the part we soon on an oscilloscope):
real((a+jb)e’®) = a cos (wr) — b sin (o)
or the phasor representation of a sine wave is:

a+jb = acos (wt) — b sin (0r)

Phasors represent a sinusoidal signal:
The real part is cos()

The imaginary part is -sin()

+

(a+jb) = a cos(wt) - b sin(wt)

+1

1+j0 = cos(wt)

Phasor representation of a sine wave: e"'is a complex number that spins around the origin. The real part of e is a cosine wave
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If you prefer polar form:
rZ0 - e/ =re® - e/
= 7. o/(0r+0)
= rcos (wt +0) +jrsin (wr + 0)
Taking the real part:

rZ0 = rcos (0t +0)

Phasors represent a sinusoidal signal:
The magnitude is the magnitude of the cosine wave

The angle is the phase shift of the cosine wave

Note that when using phasors, frequency is understood: you have to specify what frequency you're dealing with
as a footnote.

Complex Impedances
At DC circuits, you have
V=IR

For AC circuits, it gets a little more complicated: you have

V=IR
dl
V= LZ
dv
I1=Cc%

If we could convert capacitors and inductors into something that looks like a resistor
V=17

then we could use all of the techniques taught in Circuits I. Phasors are a way to do that.

First, assume all signals (voltages and currents) are in the form of ™ (i.e. they are sinusoids). Then for resistors:
V=IR=1Z
The complex impedance of a resistor is R

For inductors:

_rdl
V—LE
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Assuming
[=el®
V=L jo- e
= (L) - I
—7.1

The complex impedance of an inductor is jwL

For a capacitor

_ rdVvV
I=C7
Assuming
V= e/
I[=C-jo- e
=joC-V
_ 1
v=(5e) 1
=Z-1

The complex impedance of a capacitor is 1/ jwC

In summary:
Parameter Phasor Representation
Voltage V = a cos(wt) + b sin(wt) a-jb
Resistor R R
Inductor L jwL
Capacitor C 1/jwC
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Circuit Analysis with Phasors

With phasors, you can analyze RLC circuits with sinusoidal inputs just like you did with DC circuits - ableit

using complex numbers.

Example 1: Determine y(t)

10V 4

L

Example 1: Solve for y(t) with a DC input

This is a trick question: At DC you don't need to use phasors - all signals will be real. Using voltage division

Y=(44T6) - 10
Y=4
y(n) =4

Example 2: Determine y(t)

100
— AAAT—
100 +
0.001F
10cos<20t>@ —
10 3 450
)

Example 2: Find y(t) using phasor analysis.
First, convert to phasors and complex impedances (shown in red).
® = 20 rad/sec
10cos (20¢) = (10 +,0)V
10022 = 1002
0.001F = - = = —~50Q
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Now solve using votlage division:

Y= (LSO) 10

=j50+100
Y=2-j4 rectangular form
Y=4.472/-63.43° polar form
meaning ( recall that o = 20)
y(t) =2 cos(201) + 4 sin(201) rectangular form
y(t) =4.472 cos (201 — 63.43°) polar form

Both answers are correct - it's a matter of taste which form you prefer.

Checking in Circuitlab:

VO 100 Q V1

+\ V1
@ sine —_— 1C:I1F
— 3.183 Hz

%

Circuitlab Circuit: Note that 20 rad/sec = 3.183 Hz

12.00%

e

10.00% | ity

6000V -

6000V |

4.000% |
2.000% |
0.000% -
-2.000%
-4.000 |
-B.000Y
-5.000%
-10.00%

-12.00v

5, %5, », ‘o a, Zag L) Ty 5 oy o S5 S 73 2,

Oy . oy iy oy oy oy Oy

Circuitlab Transient Simulation: y(t) is shown in orange
Note that the the peak voltage of y(t) is 4.518V (vs. 4.472 computed), delayed by 17% of one cycle (63 degrees)
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Example 2: Determine y(t)

0.2H
e A y()
§150.8
"
18.6 sin(754t@ 50uF
§18.6 - S

[ j26.5

Determine y(t) for a 18.6V, 120Hz input.

First, convert to phasors and complex impedances (shown in red)
O =754 rad/sec
0.2H = joL = j150.8Q
1 _
S0uUF = ot = —26.5Q

Solve using circuits techniques. The resistor and capacitor add in parallel:

-1
—i26.511100 = (; + L) =25.642~-75.14°

—26.5 100

Using voltage division

Y=< 25.64/-75.140 ) . (—j18.6)

25.64£-75.1494j150.8

Y=3.779£107.8"

meaning ( recall w =754)

y(£) = 3.779 cos (754 + 107.8)

Checking in Circuitlab

100
100
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L1
Vo 200 mH V1
@ Vi —L % R8
=/ 120 Hz 50 pF 100 Q
Circuitlab Circuit: 18.6V peak, 120Hz sine wave input
2500
V)
200004 - Vi
1500
1000% -
5.000% -
o000y -
-5.000% -
1000y
-18.00%
-20000% )
-25.00%
I fgq fga f%% Yaﬂ,. 5, Ya&. 5, f’q o, 7,2. r,‘z Tig Trn 5, y;q 5,

Circuitlab Simulation. V1 (orange)
Vout = 3.659V peak (vs. 3.779V compted), delayed by +107 degrees
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