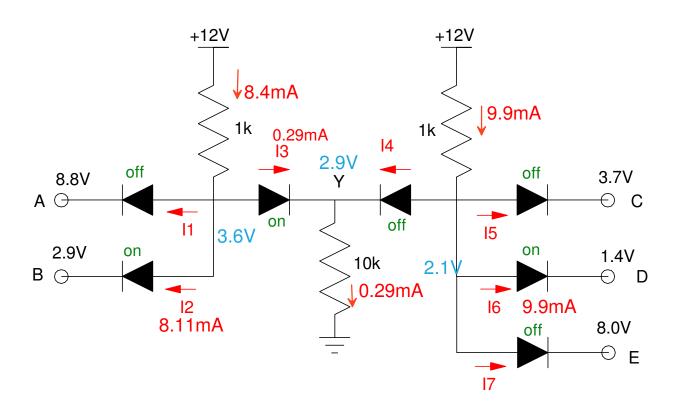
ECE 320 - Homework #4


Max/Min Circuits, Clipper Circuits, Transistor Theory. Due Monday, February 6th Please submit as a hard copy or submit on BlackBoard

Max/Min:

1) Determine the voltages and currents for the following max/min circuit. What function does this circuit implement? Y = f(A, B, C, D)

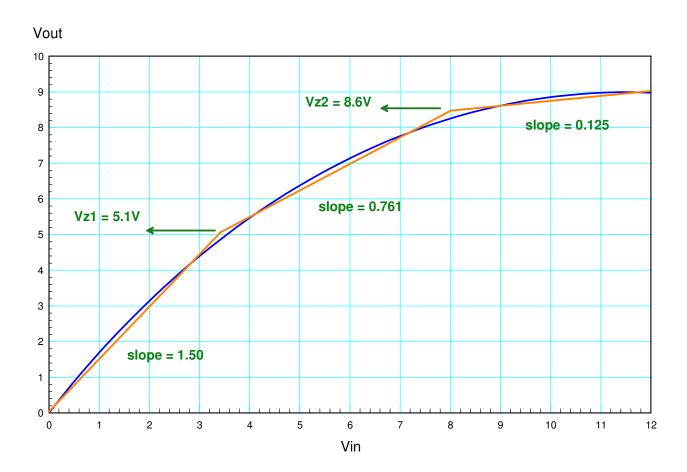
$$Y = \max(\min(A, B), \min(C, D, E))$$

$$Y = AB + CDE$$

Problem 1-2.

2) Check your results in CircuitLab (or similar program) using 1N4004 diodes

	V1	V2	V3	
Calculated	3.6V	2.9V	2.1V	
Simulated	3.589V	3.023V	2.096V	


	ld1	ld2	ld3	ld4	ld5	ld6	ld7
Calcuated	0	8.11mA	0.29mA	0	0	9.9mA	0
Simlated	-76pA	8.109mA	0.302mA	-76pA	-76pA	9.904mA	-76pA

Clipper Circuits:

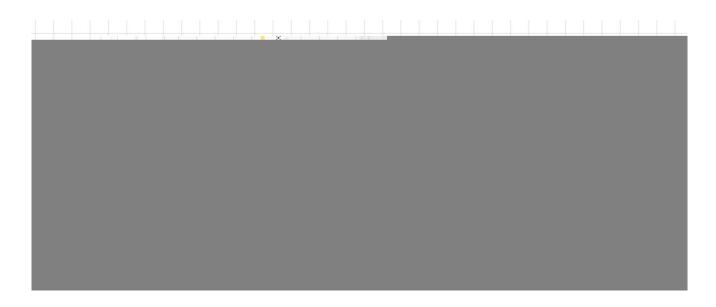
- 3) Design a circuit to approximate the following function subject to the following requirements:
 - Input: 0 .. 10V, capable of 100mA
 - Output: 100k resistor
 - Relationship: Graph below, +/- 500mV

R0: Slope =
$$1.50$$

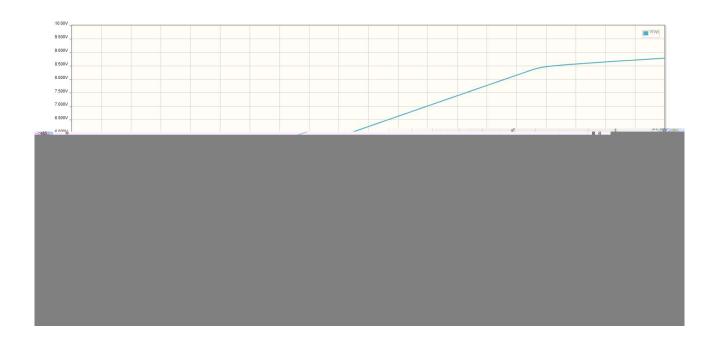
$$1 + \frac{R_0}{1k} = 1.5$$

$$R_0 = 500$$

$$1.5 \cdot \left(\frac{R_1}{R_1 + 1000}\right) = 0.761$$


$$R_1 = \left(\frac{0.507}{1 - 0.507}\right) 1k = 1029.77$$

R2: Slope = 0.125


$$1.5 \cdot \ \frac{R_{12}}{R_{12} + 1000} \ = 0.125$$

$$\label{eq:R12} \begin{array}{ll} R_{12} = R_1 || R_2 = & \frac{0.0833}{1 - 0.0833} & 1000 = 90.9 \Omega \end{array}$$

$$R_2 = 99.7\Omega$$

4) Check your design in CircuitLab

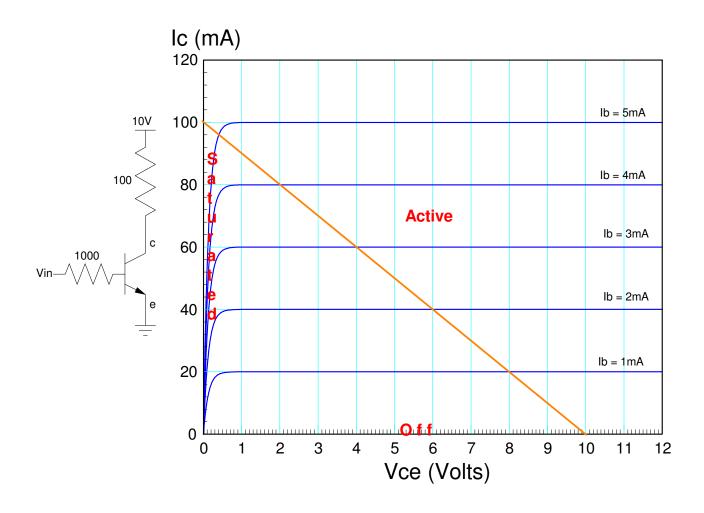
5) Design a circuit which meets the following requirements:

• Input: -10 .. +10V, capable of 100mA

• Output: 1k resistor

• Relationship:

$$V_{out} = \begin{cases} +4.5V & V_{in} > +4.5V \\ V_{in} & otherwise \\ -5.5V & V_{in} < -5.5V \end{cases}$$


D1: 3.8V zener

D2: 4.8V zener

Transistors

6) Determine the current gain, β , for the transistor show below. Also label the off, active, and saturated regions. 5mA in (Ib) produces 100mA out (Ic)

$$\beta = \left(\frac{100mA}{5mA}\right) = 20$$

- 7) Draw the load-line and determine the Q-point for
 - Vin = 0V
 - Vin = 3V
 - Vin = 6V

Vin = 0 (off region)

$$Ib = 0$$

$$Ic = 20Ib = 0$$

$$Vce = 10 - 100Ic = 10V$$

Vin = 3V (active region)

$$I_b = \left(\frac{3V - 0.7V}{1k}\right) = 2.3mA$$

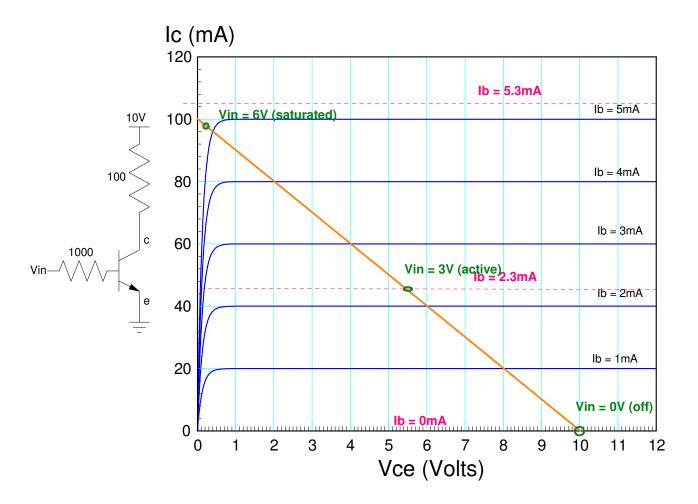
$$I_c = \beta I_b = 20I_b = 46mA$$

$$V_{ce} = 10 - 100I_c = 5.4V$$

Vin = 6V (saturated region)

$$I_b = \left(\frac{6V - 0.7V}{1k}\right) = 5.3mA$$

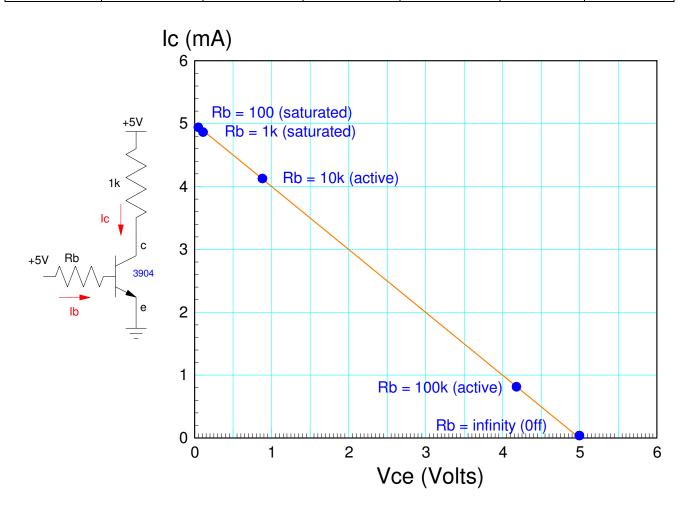
assuming active region


$$I_c = \beta I_b = 106 mA$$

$$V_{ce} = 10 - 100I_c = -0.6V$$

That can't happen: you can't have a negative voltage. This tells you that the assumption that we're in the active region is wrong. Instead, we're in the saturated region

$$V_{ce} = 0.2V$$


$$I_c = \left(\frac{10V - 0.2V}{100}\right) = 98mA$$

Lab: Please include a photo of your circuit to receive credit for problems 8-10

- 8-10) Build the following circuit with your electronics kit.
 - Measure Vce and Ic for 100 < Rb < infinity.
 - Determine the operating point for each conidition and the current gain for your 3904 transistor
 - Draw the load line on the graph below and mark each point you measured

Rb	Vb (Volts)	Vc (Volts)	lb	lc	Current Gain (Ic/Ib)	Operating Region (off / active / saturated)
1k br - bl - re	0.856V	0.157V	4.144mA	48.43mA	11.69	saturated
10k br - bl - or	0.819V	0.879V	418uA	41.21mA	98.56	active
100k br - bl - ye	0.736V	4.230V	67.9uA	7.70mA	113.3	active
1M br - bl - gr	0.716V	4.507V	4.28uA	492uA	115.1	active
infinity	0	5.03V	0	0	n/a	off

