ECE 320 - Homework #9

MOSFET Switches, CMOS logic. Due Monday, March 21st

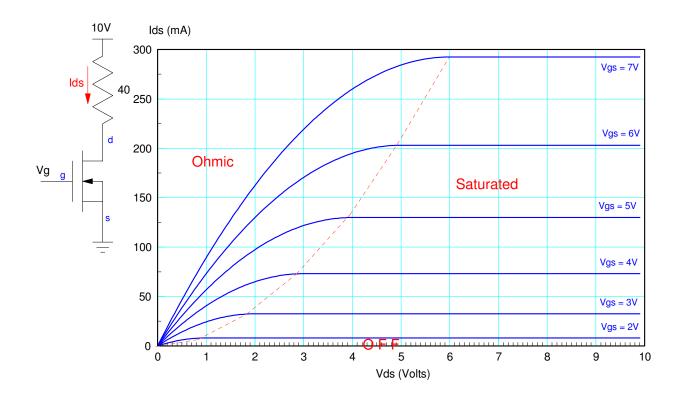
MOSFETs

- 1) The VI characteristics for an n-channel MOSFET are shown below.
 - Label the off / ohmic / and saturated regions
 - Determine the transconductance gain, kn. Assume Vth = 1.00V

Pick a point in the saturated region

$$Vgs = 7V, Ids = 290mA, Vds = 10V$$

Solve for kn


$$I_{ds} = \left(\frac{k_n}{2}\right) \left(V_{gs} - V_{th}\right)^2$$

$$290mA = \left(\frac{k_n}{2}\right) (7V - 1V)^2$$

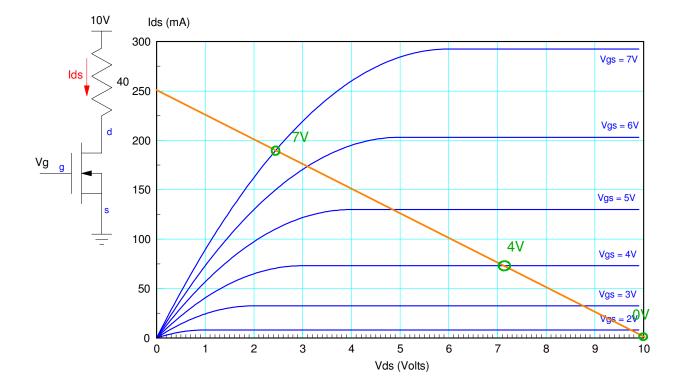
$$k_n = 0.0161 \frac{A}{V^2}$$

If you pick a point in the ohmic region, you'll get the same result - just use the ohmic-region equation

$$I_{ds} = k_n \left(V_{gs} - V_{th} - \frac{V_{ds}}{2} \right) V_{ds}$$

2) Draw the load-line for the circuit below. From the load line, determine the Q-point (Vds, Ids) when

Vg = 0V


- Vds = 10V
- Ids = 0mA
- Off region

Vg = 4V

- Vds = 7.2V
- Ids = 60mA
- Saturated region

Vg = 7V

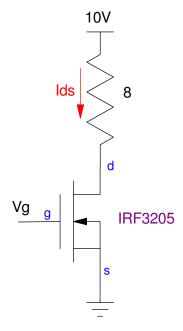
- Vds = 2.4V
- Ids = 190mA
- · Ohmic region

MOSFET Switch

The characteristics for a IRF3205 MOSFET are

- Max Current = 110A continuous
- Rds = 0.008 Ohms @ Ids = 62A @ Vgs = 10V
- Vth = 4.00V (max)
- 3) Determine the transconductance gain, kn

In the ohmic region


$$I_{ds} = k_n \left(V_{gs} - V_{th} - \frac{V_{ds}}{2} \right) V_{ds}$$

From the data

$$V_{ds} = 0.008\Omega \cdot 62A = 0.496V$$

Plugging in numbers

$$62A = k_n \left(10V - 4V - \frac{0.496V}{2} \right) \cdot 0.496V$$
$$k_n = 21.732 \frac{A}{V^2}$$

4) Determine the voltages for the following circuit for

$$Vin = Vg = 0V$$

Off region

$$Vds = 10V$$
, $Ids = 0$

Assume saturated region

$$I_{ds} = \left(\frac{k_n}{2}\right) (V_{gs} - V_{th})^2$$
$$I_{ds} = \left(\frac{21.732}{2}\right) (5V - 4V)^2$$

$$I_{ds} = 10.86A$$

$$V_{ds} = 10 - 8I_{ds} = -76.9V$$

That can't be, so assume ohmic region

$$I_{ds} = 21.732 \left(5V - 4V - \frac{V_{ds}}{2}\right) V_{ds}$$

$$10 = 8I_{ds} + V_{ds}$$

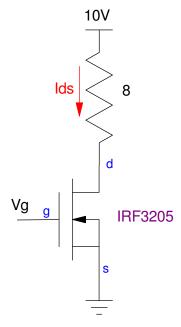
Solving two equations for two unknowns

$$Vds = 0.0589V$$
, $Ids = 1.2427$ Amps

$$Rds = Vds / Ids = 0.0474 Ohms$$

Assume Ohmic region

$$I_{ds} = 21.732 \left(10V - 4V - \frac{V_{ds}}{2}\right) V_{ds}$$


$$10 = 8I_{ds} + V_{ds}$$

Solving

$$Vds = 0.0096V$$

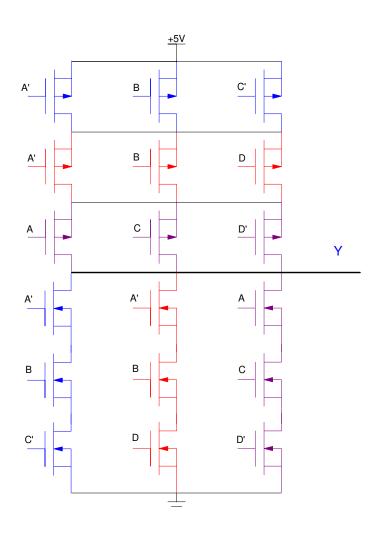
$$Ids = 1.2488A$$

$$Rds = Vds / Ids = 0.0077 Ohms$$

5) Simulate this circuit in CircuitLab using an IRF3205 MOSFET. (you may need to adjust the parameters to match your calculations for kn and Vth). Determine the voltages and currents when
Vin = Vg = 0V

CMOS Logic

6) Design a CMOS gate to implement the function: Y(A, B, C, D)


Circle the zeros (ones also work)

Y(A,B,C,D)		CD				
		00	01	11	10	
	00	1	1	1	Х	
AB	01	0	0	0	1	
	11	1	Х	1	0	
	10	Х	1	Х	0	

$$\overline{Y} = \overline{A}B\overline{C} + \overline{A}BD + AC\overline{D}$$

From DeMorgan's law

$$Y = \left(A + \overline{B} + C\right) \left(A + \overline{B} + \overline{D}\right) \left(\overline{A} + \overline{C} + D\right)$$

