Phasor VoltagesEE 206 Circuits I

Jake Glower

03/18/20

Please visit Bison Academy for correspondinglecture notes, homework sets, and solutions

Objective:

- Represent a sinusoid with a single complex number
- Express a sinusoid as seen on an oscilloscope as a complex number (aphasor)
- Determine the gain of a system from it's oscilloscope traces

Phasor Voltages:

A generic sinusoid at frequency w can be written as $x(t) = a \cos(\omega t) + b \sin(\omega t)$

or

 $x(t) = r \cos(\omega t + \theta).$

Note that to represent a sine wave, two terms are needed:

- The sine and cosine coefficients (termed rectangular form), or
- The amplitude (r) and phase shift (θ) (termed polar form).

Complex numbers can do that. The complex number representation for a sinewave is termed *it's phasor representation.*

Euler's Identity

The heart of phasor representation is Euler's identity:

 $e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$

If you take the real part, you getcosine

 $real(e^{j\omega t}) = cos(\omega t)$

Hence, the phasor representation ofcosine is 1.

Phasor Voltages: Rectangular Form

If you multiply by a complex number and take the real part, you get both sineand cosine:

$$
(a+jb) \cdot e^{j\omega t} = (a+jb) \cdot (\cos{(\omega t)} + j\sin{(\omega t)})
$$

$$
= (a\cos{(\omega t)} - b\sin{(\omega t)}) + j(\cdots)
$$

$$
real((a+jb) \cdot e^{j\omega t}) = a\cos{(\omega t)} - b\sin{(\omega t)}
$$

$$
a+jb \Leftrightarrow a\cos(\omega t) - b\sin(\omega t)
$$

Phasor Voltages: Polar Form

Similarly, if you multiply a complex exponential with a complex number inpolar form, you get a cosine with a phase shift:

$$
(r\angle\theta) \cdot e^{j\omega t} = (r \cdot e^{j\theta}) \cdot e^{j\omega t}
$$

$$
= r \cdot e^{j(\omega t + \theta)}
$$

$$
= r(\cos{(\omega t + \theta)} + j\sin{(\omega t + \theta)})
$$

$$
real((r\angle\theta) \cdot e^{j\omega t}) = r \cdot \cos{(\omega t + \theta)}
$$

 $r\angle\theta \Leftrightarrow r \cdot \cos{(\omega t + \theta)}$

Phasor Domain vs. Time Domain

Frequency is understood (not written) when using phasors

- Capital letters donate phasor-domain
- Lower case letters donate time-domain

Phasor Domain Time Domain

V=3−*j*8*v*(*t*)= $= 3\cos(20t) + 8\sin(20t)$

V=8∠− -23^{0} *v*(*t*)= ⁸ cos (20*t*− -23^{0} $^{\mathrm{U}})$

Addition and Subtraction of Voltages

Phasor Domain Time Domain

$$
V_1 = 3 - j8
$$

$$
V_2 = 2 + j6
$$

$$
v_1 = 3\cos(20t) + 8\sin(20t)
$$

$$
v_2 = 2\cos(20t) - 6\sin(20t)
$$

$$
V_3 = V_1 + V_2
$$

$$
V_3 = 5 - j2
$$

 $v_3 = v_1 + v_2$ $v_3=$ $= 5 \cos(20t) + 2 \sin(20t)$

Addition in Polar Form

This also works in polar form (use a calculator):

Phasor Domain Time Domain

 $V_1=7\angle 15^0$ $v_1=$ ⁷ cos (20*t*− -15^{0} $^{\mathrm{o}})$ *V*2=9∠670 $v_2=$ $= 9 \cos (20t + 67^0)$ $^{\mathrm{o}})$ $V_3=V_1+V_2$

$$
V_3 = 3.245 - j10.096
$$

 $v_3 = v_1 + v_2$

 $v_3=$ $= 3.245 \cos(20t) + 10.096 \sin(20t)$

note: V3 is found using a calculator which does complex numbers

Phasor Voltages: Experimental

In lab, you normally express a voltage in polar form. For example, determinethe following from the following singnal from an oscilloscope:

- The frequency, and
- The phasor representation of X and Y

Frequency:

Frequency is defined as cycles per second or one over the period.

$$
f=\frac{1}{T} h z
$$

One cycle takes 400ms, so the frequency is

$$
f = \frac{\text{one cycle}}{400 \text{ms}} = 2.5 hz
$$

\n
$$
\omega = 2 \pi f = 5 \pi \frac{\text{rad}}{\text{sec}}
$$

\n
$$
f = \frac{\text{rad}}{\text{sec}}
$$

\n
$$
f = \frac{\text{rad}}{\text{sec}}
$$

\n
$$
f = \frac{\text{tan} \times \text{tan} \times \text{tan}}{\text{tan} \times \text{tan} \times \text{tan
$$

Peak Voltage:

The voltage from the average to the peak (Vp) is the amplitude:

- $|X| = 14V$
- $|Y| = 22V$

Phase Shift:

The delay is the phase shift (delay corresponds to a negative angle)

Result:

X = 14∠ − 72⁰ $Y = 22\angle -153^0$

Gain from X to Y:

A common problem with circuit analysis is to determine the gain of a circuitat a given frequency:

Gain is output / input

$$
Y = G \cdot X
$$

$$
G = \frac{Y}{X}
$$

Gain Computations:

- The amplitude is the ratio: $|Y| / |X|$
- The phase is the difference: $\Theta_g=\Theta_y-\Theta_x$

Similarly, with the previous data

$$
|G| = \frac{22V}{14V} = 1.571
$$

$$
\angle G = -\frac{90 \text{ms delay X to Y}}{400 \text{ms period}}
$$

The gain of this filter is

$$
G = 1.571\angle -81^0
$$

