Thevenin Equivalents& Max Power Transfer

EE 206 Circuits I

Jake Glower - Lecture #11

Please visit Bison Academy for correspondinglecture notes, homework sets, and solutions

Thevenin and Norton Equivalents (take 2)

Sometimes, the Thevenin resistance isn't obvious.

- If so, apply a test voltage and compute the current draw
- The Thevenin resitance looking is is Vin / Iin

Example 1: Determine the Thevenin equivalent for the following circuit

 V_{th} : Determine the open-circuit voltage. Write the voltage node equation at V1

$$
I_b = \frac{5 - V_1}{3k}
$$

$$
\frac{V_1 - 5}{3k} - 100I_b + \frac{V_1}{5k} = 0
$$

Substitute and solve

$$
V_1 = \frac{\frac{101}{3k}}{\frac{101}{3k} + \frac{1}{5k}} \quad 5V = 4.9705V
$$

This is V_{th} .

$\rm R_{th}\!\!$

So

- Turn off the voltage source
- Measure the resistance

This isn't obvious. So

- Apply a 1V test voltage
- Compute the current drwa (Iin)

$$
I_b = \frac{0V - 1V}{3k}
$$

\n
$$
I_{in} = \frac{1V - 0V}{3k} - 100I_b +
$$

\n
$$
I_{in} = 33.87mA
$$

$$
R_{th} = \frac{V_{in}}{I_{in}} = \frac{1}{33.87 \, mA} = 29.53 \, \Omega
$$

1*V*5*k*

Example 2: Determine the Thevenin equivalent

 V_{th} : Find V3 (open circuit voltage)

V3 -9.8901 = Vth

 $R_{th}:$

- Turn off voltage sources and measure the resistance
- Since this isn't obvious, apply a 1V test voltage

$$
V_1 = \frac{1k}{1k+10k} \cdot 1V = 90.91mV
$$

\n
$$
V_2 = -1000V_1 = -90.91V
$$

\n
$$
I_{in} = \frac{1V}{11k} + \frac{1V - (-90.91V)}{100} = 919.2mA
$$

\n
$$
R_{in} = \frac{V_{in}}{I_{in}} = \frac{1V}{919.2mA} = 1.088\Omega
$$

Max Power Transfer

What resistance (R_L) maximizes the power to the load?

- (V_{th}, R_{th}) models a solar panel. What load maximizes the power the solar cell produces?
- \cdot (V_{th}, R_{th}) models a stereo. What speaker (R_L) maximizes the output power?

Case 1: R_{th} is fixed. Find R_L to maximize the power to the load.

Note that there is a maximum point:

- If $R_L = 0$, the power to the load is zero
- If R_L = infinity, I = 0 and the power to the load is again zero.

Somewhere between $R_L = 0$ and $R_L =$ infinity is a maximum power transfer.

$$
I = \frac{V_{th}}{R_{th} + R_{L}}
$$

\n
$$
P = I^{2}R_{L}
$$

\n
$$
P = \frac{R_{L}}{(R_{th} + R_{L})^{2}} V_{th}
$$

\n
$$
\frac{d}{dR_{L}} \frac{R_{L}}{(R_{th} + R_{L})^{2}} = 0
$$

\n
$$
(R_{L} + R_{th})(R_{th} - R_{L}) = 0
$$

\n
$$
R_{L} = R_{th}
$$

\n
$$
R_{L} = -R_{th}
$$

\n
$$
minimum
$$

\n
$$
R_{L} = -R_{th}
$$

\n
$$
minimum
$$

Assume for instance that $V_{th} = 12V$ and $R_{th} = 2$ Ohms:

```
Vin = 12;Rth = 2;
RL = [0:0.01:10]';I = Vin ./ (Rth + RL);
P = (I \cdot ^ 2) \cdot ^* R L;
```
Note that at maximum power transfer, you are 50% efficient

Case 2: R_{L} is fixed. Find R_{th} to maximize the power to the load.

The solution in this case is *not* $R_{th} = R_L$

- Maximum is when $R_{th} = -R_L$
- Closest you can get is $R_{th} = 0$

$$
V_{th} = 12V \text{ and } R_{L} = 2 \text{ Ohms}
$$

\n
$$
V_{th} = 12;
$$

\n
$$
RL = 2;
$$

\n
$$
RL = [0:0.01:10]';
$$

\n
$$
I = V_{th} / (RL + Rth);
$$

\n
$$
P = (I \cdot ^2) \cdot * RL;
$$

\nplot(Rth, P);

Case 3: Find R_{L} to maximize the efficiency of the system.

Efficiency is the power to the load divided by the total power dissipated.

$$
eff = \frac{P_{Load}}{P_{total}}
$$

or

$$
eff = \frac{I^2 R_L}{I^2 (R_{th} + R_L)} = \frac{R_L}{R_L + R_{th}}
$$

Max efficiency is

- $R_{\text{L}} = \text{infinity}$
- Power $= 0$

That's one of the problems of delivering power to aload

- For high efficiency, you want $R_L >> R_{th}$
- For maximum power, you want $R_L = R_{th}$

