Capacitors & The Heat Equation

Capacitors

A capacitor is a set of parallel plates¹ with the capacitance equal to

$$
C = \varepsilon \frac{A}{d} \text{ (Farads)}
$$

where

- ε is the dielectric constant of the material between plates (air = 8.84 · 10⁻¹²)
- A is the area of the capacitor, and
- d is the distance between plates.

A capacitor is two parallel plates. They store energy in the electric field between the plates

The area you need for 1 Farad with plates 1mm apart is

$$
1 = (8.84 \cdot 10^{-12}) \frac{A}{0.001m}
$$

$$
A = 113, 122, 171m^2
$$

The capacitor would need to have dimensions of 10.6km x 10.6km for a capacitance of 1 Farad. Typically, capacitors are in the order if micro-farads.

The charge stored in a capacitor is proportional to the voltage as

 $Q = C \cdot V$

1

where Q is the charge in Coulombs (one Coulomb is equal to $6.242 \cdot 10^{18}$ electrons). When the voltage across a capacitor drops, the charge stored drops proportionally. This gives the fundamental equation for a capacitor:

 $I = \frac{dQ}{dt}$ $\frac{dQ}{dt} = C \frac{dV}{dt}$ $\frac{dV}{dt} + V\frac{dC}{dt}$ *dt*

Assuming the capacitance is constant

http://www.electronics-tutorials.ws/

$$
I = C \frac{dV}{dt}
$$

This means that capacitors are integrators:

$$
V = \frac{1}{C} \int I \cdot dt
$$

In Calculus, you will be covering integration and differentiation and how to come up with a closed-form solution to various problems. With MATLAB (i.e. in this class) you can solve using numerical methods.

Capacitors and Energy Storage

 \bullet

Capacitors store energy when charged. The energy stored is

$$
P = VI = V \cdot C \frac{dV}{dt}
$$

\n
$$
E = \int P dt = \int \left(VC \frac{dV}{dt} \right) dt = \int (VC)dV
$$

\n
$$
E = \frac{1}{2}CV^2
$$

The energy stored in a capacitor isn't large - but it is there. To put this in perspective, the energy stored in a 1F capacitor compared to other common items are as follows:

In theory, you *could* build an electric car using capacitors to store the energy. This would have advantages:

Example 2: 3-Stage RC Filter

Next, find the voltages for the following 3-stage RC filter when

$$
V_0(t) = 10u(t)
$$
\n
$$
\frac{v_0}{\sqrt{v_0 + v_0}}
$$
\n
$$
v_0
$$
\n $$

3-Stage RC Filter

To solve for V1, V2, and V3

- Determine the currents to each capacitor: I1, I2, and I3
- From this find dV/dt,
- From this, integrate to find V(t) \bullet

Step 1: Determine I1, I2, and I3. From *current in = current out*

$$
C_1 \frac{dV_1}{dt} = I_1 = \left(\frac{V_0 - V_1}{2}\right) + \left(\frac{0 - V_1}{100}\right) + \left(\frac{V_2 - V_1}{2}\right)
$$

$$
C_2 \frac{dV_2}{dt} = I_2 = \left(\frac{V_1 - V_2}{2}\right) + \left(\frac{0 - V_2}{100}\right) + \left(\frac{V_3 - V_2}{2}\right)
$$

$$
C_3 \frac{dV_3}{dt} = I_3 = \left(\frac{V_2 - V_3}{2}\right) + \left(\frac{0 - V_3}{100}\right)
$$

Next, determine dV/dt

$$
\frac{dV_1}{dt} = 5V_0 - 10.1V_1 + 5V_2
$$

$$
\frac{dV_2}{dt} = 5V_1 - 10.1V_2 + 5V_3
$$

$$
\frac{dV_3}{dt} = 5V_2 - 5.1V_3
$$

Now integrate using Euler integration and Matlab.

• Note: You will get the same results if you run a Time Domain simulation in CircuitLab

In Matlab:

```
% 3-stage RC Filter
VO = 10;VI = 0;V2 = 0;V3 = 0;dt = 0.01;t = 0;Y = [];
while(t < 4)
   dV1 = 5*V0 -10.1*V1 + 5*V2;
   dV2 = 5*V1 -10.1*V2 + 5*V3;dV3 = 5*V2 - 5.1*V3;
  VI = VI + dVI * dt;V2 = V2 + dV2 * dt;V3 = V3 + dV3 * dt;t = t + dt;Y = [Y; [VI, V2, V3] ]end
t = [1:length(Y)]' * dt;
```

```
plot(t, Y);
```


Case 3: 10-Stage RC Filter: Heat Equation

Now repeat for 10 stages

Note that stage 1 .. 9 all have the same differential equation except for the last stage

 dV_2 $\frac{v_2}{dt}$ = 5*V*₁ – 10.1*V*₂ + 5*V*₃

The only different one will be the last stage (which only has a single 2-Ohm resistor attached to it)

$$
\frac{dV_{10}}{dt} = 5V_9 - 5.1V_{10}
$$

In Matlab:

```
% 10-stage RC Filter
VO = 10;V = zeros(10, 1);dV = 0 * V;dt = 0.01;t = 0;Y = [];
while (t < 10)dV(1) = 5*V0 -10.1*V(1) + 5*V(2);
    for i=2:9
       dV(i) = 5*V(i-1) - 10.1*V(i) + 5*V(i+1); end
   dV(10) = 5*V(9) - 5.1*V(10);
   V = V + dV * dt;t = t + dt;N = [0:10]; plot(N, [V0; V], 'b.-');
    ylim([0,10]);
    pause(0.01);
   Y = [Y ; [V'] ];
end
pause(5);
t = [1:length(Y)]' * dt;plot(t, Y);
```


Votlages V1.. V10 vs. Time

Note that this program simulates

- The charging of 10 capacitors in an RC circuit, \bullet
- \bullet The temperature along a metal rod as it heats up when the base is connected to 10 degrees

Coupled fist-order differential equations like this also describe heat flow - hence differential equations of this form are caller *the heat equation*

Eigenvalues and Eigenvectors

The dynamics for the 10-stage RC filter are: .
.

$$
\frac{dV_1}{dt} = \dot{V}_1 = 5V_0 - 10.1V_1 + 5V_2
$$
\n
$$
\frac{dV_2}{dt} = \dot{V}_2 = 5V_1 - 10.1V_2 + 5V_3
$$
\n
$$
\vdots
$$
\n
$$
\frac{dV_9}{dt} = \dot{V}_9 = 5V_8 - 10.1V_9 + 5V_{10}
$$
\n
$$
\frac{dV_{10}}{dt} = \dot{V}_{10} = 5V_9 - 5.1V_{10}
$$

In matrix form, this can be written as

$$
\dot{V} = AV + BV_0
$$

.

or

The *eigenvalues* of matrix A tell you *how* the system behaves. Matrix A is a 10x10 matrix:

```
A = zeros(10,10);for i=1:9
   A(i, i) = -10.1;A(i, i+1) = 5;A(i+1,i) = 5; end
A(10,10) = -5.1;A
```


 -19.6557 -18.3624 -16.3349 -13.7534 -10.8473 -7.8748 -5.1000 -2.7695 -1.0903 -0.2117

The eigenvalues tell you *how* the mode behaves

The eigenvector tells you *what* behaves that way.

For example, assume

 \cdot V0 = 0, and

 $V(0)$ = the last column (show in red: the eigenvector associated with the slow eigenvalue)

Then, V(t) will be

 $V(t) = V_0 e^{-0.2117t}$

In Matlab, you can see this by

- Setting $V0 = 0$, and
- Changing the initial conditions

 $VO = M(:,10) * 10 / max(M(:,10))$

```
% 10-stage RC Filter
VO = 0;V = [ 1.4946
     2.9558
     4.3510
     5.6490
     6.8208
     7.8402
     8.6845
     9.3348
     9.7766
    10.0000];
dV = 0 * V;dt = 0.01;t = 0;Y = [];
while(t < 10)
    % rest of code stays the same
```
The result is as follows:

- The shape of the curve stays the same: the shape is the slow eigenvector (what behaves this way) \bullet
- The amplitude decays slowly, as exp(-0.2117t) (the slow eigenvalue, how it behaves) \bullet

Volages plotted every 1.00 second when the initial condition is the slow eigenvector

If you make the initial condition the fast eigenvector (shown in blue) $VO = M(:,1) * 10 / max(abs(M(:,1)))$

% 10-stage RC Filter

 $VO = 0$; $V =$ [-2.9558 5.6490 -7.8402 9.3348 -10.0000 9.7766 -8.6845 6.8208 -4.3510 1.4946]; $dV = 0^*V$; $dt = 0.01$;

etc...

the response is as shown below. Note

- The shape of the cuve is the same for all time: only one eigenvector is present \bullet
- The amplitude drops quickly: as exp(-19.65t) (the fast eigenvalue) \bullet

Voltages plotted every 0.05 seconds when the initial condition is the fast eigenvector

If you make the initial condition a set of random voltages,

- All eigenvectors will be excited
- The fast ones quickly decay,
- Leaving the slow eigenvector
- % 10-stage RC Filter

```
VO = 0;V = 10*rand(10,1);
dV = 0 * V;dt = 0.001;t = 0;Y = [];
N = [0:10];plot(N, [V0; V], 'r.-');
hold on
t1 = 0;while(t < 2)
   dV(1) = 5*VO -10.1*V(1) + 5*V(2);
   for i=2:9dV(i) = 5*V(i-1) - 10.1*V(i) + 5*V(i+1); end
   dV(10) = 5*V(9) - 5.1*V(10);
   V = V + dV * dt;t = t + dt;t1 = t1 + dt;N = [0:10];if (t1 > = 0.15) plot(N, [V0; V], 'b.-');
      t1 = 0; end
    pause(0.01);
   Y = [Y; [V'] ];
end
```