Math 166: Calculus Il

Integration

ECE 111 Introduction to ECE
Jake Glower - Week #6

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions

Math 166: Calculus I

Topics
- Integration
« Numerical Integration
- Animation in Matlab (bouncing ball)
- Animation in Matlab (Shoot game)

Integration

Integration and differentiation both operate on functions:
 The derivative of a function is the slope
 The integral of a function is the area under the curve.

o<

Area 1

The integral of y(x) is the area under the curve to the left of x

10

Integration 1s useful: with i1t you can

« Determine the balance in your checking account given your daily deposits and
withdrawals,

« Determining the velocity and position of a motor given its acceleration, and

« Do animation in Matlab where you determine the velocity and position of a
ball as it bounces given its acceleration.

Integration & Differentiation

Integration and differentiation are also related:
 The integral of the derivative of a function is that function:

d
%)=y
 The derivative of the integral of a function is that function
Lfy-dxy=y

This 1s used in Math 166
- To find the integal of y(x)
« Find a function whose derivative is y(X)

< (asin(bx)) = ab cos(bx)
Hence
asin(bx) = | (abcos(bx)) - dx.

Math 166 gets more difficult than Math 165
Example: Chain Rule:

da _db
—(b)==-b+a -

Integration by parts is the inverse of this:
_[(da db
ab—j(a-b+a-5)dx

Translation:
« If you can express a function y(x) as

y(x) = d“ b+a ;li

then

[y(0) = ab
Coming up with a(x) and b(x) can be tricky...

Graphical Integration:
Fortunately, there 1s an easier solution
- The integral of a function is the area to the left
 The integral of y(x) at x=4 1s
- The integral of y(x) at x=3 (Area 1),
- Plus the area from 3 to 4 (Area 2)

y
6

5

Area 1

Example, sketch the integral of the following curve:
 Find the area under the curve to the left of point x
One way to think about this 1s

« Assume y(x) 1s how much money you're depositing at your bank
- The balance at any time 1is the integral (net balance)

1 1 1 1 1
1S, TN UG | SO o SO S R NS A
T T 17T T T 17T T T 17T TT 171 TT 171 T T 171 T T 171 T T 17T T T 17T T T 17T

Assume your starting balance is $0
X =2:

« Nothing was added

« Balance ends up at O

X =4

- Area under curve = +4 —
- Balance ends up at +4 yX) /_\
c0+4=4 | J'/

X = 6: ‘_,ﬁ_‘

- Nothing was added from 4..6

- Balance remains at +4

- 0+4=4 X
X ="

 Area under curve = -3

- Balance drops to +1

e N N N Y

hA b N L

As a second example, in Math 166 you'll learn

f sin(x) - dx = —cos(x)

Graphically, this looks like the following:

12

08 [
06 [
04

02f
04f
06
08

02

sin(x) <0
Integral is decreasing

sin(x) > 0

I

I sin(x) > 0
Injegral is increasing |

I

|

I

Intggral is increasing

1.2||||
0

X

When sin(x) > 0, its integral is increasing
When sin(x) < 0, its integral is decreasing

10

Numerical Integration
Matlab can integrate using numerical methods

The integral at point x 1s
« The net area to the left of x, or
« The net area to the left of (x-1), plus the area between x-1 and x.

The latter lets you set up a for-loop in Matlab.

At each point in X, the integral of y(x) is
 The previous integral you calculated, plus
 The area between x-1 and x

There are several ways to calculate the area under a curve.

Euler Integration:

Approximate the area under the curve using rectangles.
- Advantage: Simple
 Disadvantage: Slightly off

y
6 =
I X
;| y()
4]
3
i Area 5
2
i Area 4
I Area 3 dx
1 -
I Area 2
[/' Area 1
O 1 1 1 1 &
0 1 2 3 4 5 6 7

Bilinear Integration:

Approximate the area with trapezoids

- Better than Euler
« Still slightly off

y
6 =

5

Area 3

Area 4

Area 5

dx

N
()]

10

Runge-Kutta Integration:

Approximate the area with polynomials
- More accurate, but
« More complicated

The higher-order the polynomial, the better the approximation.

All of these methods can be implemented in Matlab

Integrate.m

Let's implement bilinear integration.

jb v dx ~(y(b)+y(a)) (b—a)
Matlab Code:

function [y] = Integrate(x,
% function [y] = Integrate(x, dy)

% bilinear integration
npt = length (x);
y = 0*dy;

for 1=2:npt

y(1i) = y(1-1) + 0.5*(dy (1

end

end

)

dy)

+ dy(i-1))

Check vs. a known function
« Always a good idea

From before

£(2sin(3x)) = 6 cos(3x)
meaning

| 6 cos(3x)dx =2 sin(3x)
Let

dy = 6 cos(3x)

y = 2 sin(3x)

Check 1n Matlab:
>> x = [0:0.1:41";
>> y = 2*¥sin(3*x);
>> dy = 6*cos(3*x);
>> plot(x,y,'r',x,Integrate(x,dy), 'b.");

2 I I I I I

Actual integral of 6¢cos(3x) (red) and numerical solution (blue dots)

Try another function
« The integral 1s hard to find using Math 166 techniques
« Easy to find using Matlab

_ cos(3x))
Y= (x2+1

7=y dx

As long as you can put y(x) into Matlab, you can find its integral. In Matlab:

>> dx = 0.01;

>> x = [-4:dx:4]";
>> y = cos(3*x) ./ (x."2 + 1);
>> z = Integrate(x,Vy);

>> plot (x,vy, 'b',x,2z,'r")

1.2

0.8

0.6

0.4

0.2

0.2 |
0.4 |

-0.6 L————

y(x) (blue) and its integral (red)

Path Planning using Integration

In our previous lecture, differentiation was used to determine the velocity and
acceleration associated with a given path of a robot arm from point a to b. With

integration, you can go the other way:
- Given the acceleration (i.e. the current to the motor), determine

- The implied velocity (1st integral), and
 The implied position (2nd integral).

Assume the acceleration 1s a constant

/"_ +1 O<r<l1
-1 1<t<?2

The velocity and position can be found using integration.

>> x = [-1:0.01:3]" + le-6;

>> ddy = 1*(x>0) .* (x<1) —-1*(x>1).*(x<2);
>> dy = Integrate(x,ddy);

>> y = Integrate(x,dy);

>> plot (x,vy,x,dy, x,ddy)

12

11

08 [Position

0.6 Velocity

04 [
0.2f
0F

02[
0.4 Acceleration

-0.6 |
-0.8 |

-1:

126

Another path that avoids jump discontinuities:

>> ddy = sin(x*pil) .* (x>0) .* (x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> max (y)
0.6366
>> ddy = ddy / 0.6366;
>> dy = dy / 0.6366;
>> vy =y / 0.6366;
>> plot (x,v,x,dy, x,ddy)

2 -

175
15[

125¢ position
1f

0.75F]
05 Velocity

0.25f
0F

-0.25[
0.5
-0.75[
o Acceleration
125
15[
175

ok

Integration and Noise

Students tend to like differentiation
- Simply apply a set of rules to a function

Students tend to dislike integration
« You often have to guess the answer to find the answer
« Or guess some function so you can use integration by parts

In practice, integration is preferred over differentiation
- Differentiation amplifies noise
- Integration removes noise

Example

y(t) = sin(?) + noise

>> t = [0:0.001:10]";

>> y = sin(t)
>> plot (t,y)

+ 0.1*randn (10001,1);

18

05

0.8

If you differentiate this signal, you amplify the noise:

>> plot (t,derivative(t,vy))

300

200

100

-100 “

=200 |~

-300

Derivative of y(t): differentiation amplifies noise

If you integrate this signal, you remove the noise
>> plot(t,y, 'b',t, Integrate(t,y),'r')

25

y(t) (blue) and its integral (red). Integration cleans up a signal.

Moral: Avoid differentiation. Integration is OK though.

Fun with Integration: Bouncing Ball

Matlab has pretty good animation

Assume
« Gravity is in the -y direction
« Flooraty =0
« Left wallatx =0
- Right wall at x =3

« If you hit the wall of floor, the
velocity changes sign (bounces)

y
—3-
[Wall

Ball

O

l gravity

Wall

Floor

Matlab script

Bouncing Ball
Initial Conditions

o\°

o\°

Q 0 O X
X
|
o

while (£t<10)
ddx = 0;
ddy = —-9.8;

dx = dx + ddx*dt;
dy = dy + ddy*dt;

if(y<0) dy = abs(dy);
if(x>3) dx —abs (dx) ;
1f (x<0) dx = abs (dx);

4

X = x + dx*dt;
y =y + dy*dt;

plot(x y, 'ro');
x1im ([0, 3]);
ylim ([0, 3]);
pause(O 01);

end

Result:

« Ball bounces off the floor and the walls

 (shows off better in Matlab)

25

16~

Fun with Integration: Shoot Game

Launch a tennis ball. Call the function by specifying
« The initial velocity in m/s
- The initial angle in degrees, and
- The target position in meters.

y

60

40

Initial Velocity

20

: \'ﬂltl&' Angle Target

0 20 40 60 80 100

120

Use numerical integration
« Calculate the velocity based upon the acceleration
« Calculate the position based upon the velocity

When the tennis ball hits the ground (y=0)
« Return how far away you were from the target.

40
Path of the Tennis Ball

20

120

function [Error] = Shoot(Speed, Angle, Target)

x = 0;

y = 0;

dx = Speed * cos (Angle*pi/180);
dy = Speed * sin(Angle*pi/180);
dt = 0.01;

N = 0;

plot (Target, 0, '"bx"'");
x1im([0,120]);

ylim ([0,70]) ;

hold on

while(y >= 0)
ddx = 0;
ddy = -9.8;
dx = dx + ddx*dt;
dy = dy + ddy*dt;
X = x + dx*dt;
y =y + dy*dt;

N = mod(N+1,10);

1f(N == 0) plot(x,y,'ro',Target,0, 'bx"'); end
pause (0.01);

end

X = x - y*(dx/dy);
Error = x — Target;
end

From the command window, you can call this function as

>> Shoot (30,

60, 90)

ans = -10.3829

The tennis ball hit 10.3829 meters short of the target

70

B0

50

40

30

20

OOQOOOOOOQOO

o} o}
oo 2o
OO

120

Hitting the target is a f(x) = 0 problem. Using California method:

Target = 50 + 50*rand;

clf

x0 = 20;

y0 = Shoot (x0, 60, Target);
x1 = 30;

yl = Shoot (x1, 60, Target);
disp([0,x1,v1]);

for n=1:5
x2 = x0 — (x1-x0)/(yl-y0)*vyO0;
y2 = Shoot (x2, 60, Target);
disp([n,x2,y2]);

x0 = x1;
y0 = vyl;
x1l = x2;
vl = vy2;

end

This results in

Uk w N

n X error
0 30.0000 24.6189
.0000 24.4219 -2.1797
.0000 24.8756 -0.2055
.0000 24.9228 0.0021
.0000 24.9224 -0.0000
.0000 24.9224 -0.0000
e Og;&&&&&ﬁ%’oo&%oooo o |
C@Eﬁ)ooooocoo oo o,
ol P go&ég %OOOOO o7 > 20@ _
& | " |) Oi | | |

100

120

Using Newton's method to solve for f(x) =0

Target = 50 + 50*rand;
clf
X2 = 20;
for n=1:5
x0 = x2;
y0 = Shoot (x0, 60, Target);
disp([n, x0, yO0])
xl = x0 + 0.1;
yl = Shoot (x1, 60, Target);
x2 = x0 - (x1-x0)/(y1l-y0)*v0;
end

disp (yO)

The results are

n X error
1.0000 20.0000 —=45.7577
2.0000 32.9302 14.6581
3.0000 30.4131 0.5809
4.0000 30.3052 0.0020
5.0000 30.3048 0.0000
OO@ooooooo@@@@@@@@@@@ ooooo
a0|— Oé)goo Ce . ooo _
(b%ggo @@@@ CJo
20+ Cp@ @@@ _
ooiooooOOOOoooooo @@
10— @o(%éboo ooooo é’@]
& |) | | @é’ |

120

Summary:

Integration 1s pretty useful. With it, you can
« Determine the balance of your checking account given your deposits vs. time,
« Determine the path of a robotic arm given its acceleration, and
- Run animation in Matlab for bouncing balls, shooting tennis balls, and so on.

The nice thing about numerical integration is you can integrate any function you
can get into Matlab.

