
Math 166: Calculus II
Integration

ECE 111 Introduction to ECE

Jake Glower - Week #6

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Math 166: Calculus II

Topics

Integration

Numerical Integration

Animation in Matlab (bouncing ball)

Animation in Matlab (Shoot game)

Integration

Integration and differentiation both operate on functions:

The derivative of a function is the slope

The integral of a function is the area under the curve.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

Area 1 Area 2

The integral of y(x) is the area under the curve to the left of x

Integration is useful: with it you can

Determine the balance in your checking account given your daily deposits and
withdrawals,

Determining the velocity and position of a motor given its acceleration, and

Do animation in Matlab where you determine the velocity and position of a
ball as it bounces given its acceleration.

Integration & Differentiation

Integration and differentiation are also related:

The integral of the derivative of a function is that function:

∫ 
dy

dx


 dx = y

The derivative of the integral of a function is that function
d

dx
(∫ y ⋅ dx) = y

This is used in Math 166

To find the integal of y(x)

Find a function whose derivative is y(x)
d

dx
(a sin(bx)) = ab cos(bx)

Hence

.a sin(bx) = ∫ (ab cos(bx)) ⋅ dx

Math 166 gets more difficult than Math 165

Example: Chain Rule:
d

dx
(ab) =

da

dx
⋅ b + a ⋅

db

dx

Integration by parts is the inverse of this:

ab = ∫ 
da

dx
⋅ b + a ⋅

db

dx

 dx

Translation:

If you can express a function y(x) as

y(x) =
da

dx
⋅ b + a ⋅

db

dx

then

 ∫ y(x) = ab

Coming up with a(x) and b(x) can be tricky...

Graphical Integration:

Fortunately, there is an easier solution

The integral of a function is the area to the left

The integral of y(x) at x=4 is

- The integral of y(x) at x=3 (Area 1),

- Plus the area from 3 to 4 (Area 2)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

Area 1 Area 2

Example, sketch the integral of the following curve:

Find the area under the curve to the left of point x

One way to think about this is

Assume y(x) is how much money you're depositing at your bank

The balance at any time is the integral (net balance)

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

y(x)

Assume your starting balance is $0

x = 2:

Nothing was added

Balance ends up at 0

x = 4:

Area under curve = +4

Balance ends up at +4

0 + 4 = 4

x = 6:

Nothing was added from 4..6

Balance remains at +4

0 + 4 = 4

x = 7

Area under curve = -3

Balance drops to +1

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

y(x)

Integral(y)

As a second example, in Math 166 you'll learn

∫ sin(x) ⋅ dx = −cos(x)

Graphically, this looks like the following:

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

sin(x) -cos(x)

sin(x) > 0

Integral is increasing

sin(x) < 0

Integral is decreasing

sin(x) > 0

Integral is increasing

When sin(x) > 0, its integral is increasing
When sin(x) < 0, its integral is decreasing

Numerical Integration

Matlab can integrate using numerical methods

The integral at point x is

The net area to the left of x, or

The net area to the left of (x-1), plus the area between x-1 and x.

The latter lets you set up a for-loop in Matlab.

At each point in x, the integral of y(x) is

The previous integral you calculated, plus

The area between x-1 and x

There are several ways to calculate the area under a curve.

Euler Integration:

Approximate the area under the curve using rectangles.

Advantage: Simple

Disadvantage: Slightly off

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

dx

Area 1

Area 2

Area 3

Area 4

Area 5

Bilinear Integration:

Approximate the area with trapezoids

Better than Euler

Still slightly off

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

dx

Area 1

Area 2

Area 3

Area 4

Area 5

Runge-Kutta Integration:

Approximate the area with polynomials

More accurate, but

More complicated

The higher-order the polynomial, the better the approximation.

All of these methods can be implemented in Matlab

Integrate.m

Let's implement bilinear integration.

∫a

b
y ⋅ dx ≈ 


y(b)+y(a)

2

 ⋅ (b − a)

Matlab Code:

function [y] = Integrate(x, dy)
% function [y] = Integrate(x, dy)
% bilinear integration

npt = length(x);

y = 0*dy;

for i=2:npt
 y(i) = y(i-1) + 0.5*(dy(i) + dy(i-1)) * (x(i) - x(i-1));
end

end

Check vs. a known function

Always a good idea

From before
d

dx
(2 sin(3x)) = 6 cos(3x)

meaning

∫ 6 cos(3x)dx = 2 sin(3x)

Let

dy = 6 cos(3x)

y = 2 sin(3x)

Check in Matlab:
>> x = [0:0.1:4]';
>> y = 2*sin(3*x);
>> dy = 6*cos(3*x);
>> plot(x,y,'r',x,Integrate(x,dy),'b.');

Actual integral of 6cos(3x) (red) and numerical solution (blue dots)

Try another function

The integral is hard to find using Math 166 techniques

Easy to find using Matlab

y = 


cos(3x)

x2+1




z = ∫ y ⋅ dx

As long as you can put y(x) into Matlab, you can find its integral. In Matlab:

>> dx = 0.01;
>> x = [-4:dx:4]';
>> y = cos(3*x) ./ (x.^2 + 1);
>> z = Integrate(x,y);
>> plot(x,y,'b',x,z,'r')

-4 -3 -2 -1 0 1 2 3 4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y(x)

z(x)

y(x) (blue) and its integral (red)

Path Planning using Integration

In our previous lecture, differentiation was used to determine the velocity and
acceleration associated with a given path of a robot arm from point a to b. With
integration, you can go the other way:

Given the acceleration (i.e. the current to the motor), determine

The implied velocity (1st integral), and

The implied position (2nd integral).

Assume the acceleration is a constant

y =





+1 0 < t < 1

−1 1 < t < 2

The velocity and position can be found using integration.

>> x = [-1:0.01:3]' + 1e-6;
>> ddy = 1*(x>0).*(x<1) -1*(x>1).*(x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> plot(x,y,x,dy,x,ddy)

-1 0 1 2 3
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Position

Velocity

Acceleration

Another path that avoids jump discontinuities:

>> ddy = sin(x*pi) .* (x>0) .* (x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> max(y)
 0.6366
>> ddy = ddy / 0.6366;
>> dy = dy / 0.6366;
>> y = y / 0.6366;
>> plot(x,y,x,dy,x,ddy)

-1 0 1 2 3
-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

x

position

Velocity

Acceleration

Integration and Noise

Students tend to like differentiation

Simply apply a set of rules to a function

Students tend to dislike integration

You often have to guess the answer to find the answer

Or guess some function so you can use integration by parts

In practice, integration is preferred over differentiation

Differentiation amplifies noise

Integration removes noise

Example

y(t) = sin(t) + noise

>> t = [0:0.001:10]';
>> y = sin(t) + 0.1*randn(10001,1);
>> plot(t,y)

If you differentiate this signal, you amplify the noise:

>> plot(t,derivative(t,y))

Derivative of y(t): differentiation amplifies noise

If you integrate this signal, you remove the noise
>> plot(t,y,'b',t,Integrate(t,y),'r')

y(t) (blue) and its integral (red). Integration cleans up a signal.

Moral: Avoid differentiation. Integration is OK though.

Fun with Integration: Bouncing Ball

Matlab has pretty good animation

Assume

Gravity is in the -y direction

Floor at y = 0

Left wall at x = 0

Right wall at x = 3

If you hit the wall of floor, the
velocity changes sign (bounces)

0 1 2 3
0

1

2

3

x

y

WallWall

Floor

Ball

gravity

Matlab script

% Bouncing Ball
% Initial Conditions
x = 0;
y = 1;
dx = 1;
dy = 0;
t = 0;
dt = 0.01;

while(t<10)
 ddx = 0;
 ddy = -9.8;

 dx = dx + ddx*dt;
 dy = dy + ddy*dt;

 if(y<0) dy = abs(dy); end
 if(x>3) dx = -abs(dx); end
 if(x<0) dx = abs(dx); end

 x = x + dx*dt;
 y = y + dy*dt;

 plot(x,y,'ro');
 xlim([0,3]);
 ylim([0,3]);
 pause(0.01);
end

Result:

Ball bounces off the floor and the walls

(shows off better in Matlab)

Fun with Integration: Shoot Game

Launch a tennis ball. Call the function by specifying

The initial velocity in m/s

The initial angle in degrees, and

The target position in meters.

0 20 40 60 80 100 120
0

20

40

60

x

y

Initial Velocity

Initial Angle Target

Use numerical integration

Calculate the velocity based upon the acceleration

Calculate the position based upon the velocity

When the tennis ball hits the ground (y=0)

Return how far away you were from the target.

0 20 40 60 80 100 120
0

20

40

60

x

y

TargetError

Path of the Tennis Ball

function [Error] = Shoot(Speed, Angle, Target)

 x = 0;

 y = 0;

 dx = Speed * cos(Angle*pi/180);

 dy = Speed * sin(Angle*pi/180);

 dt = 0.01;

 N = 0;

 plot(Target,0,'bx');

 xlim([0,120]);

 ylim([0,70]);

 hold on

 while(y >= 0)

 ddx = 0;

 ddy = -9.8;

 dx = dx + ddx*dt;

 dy = dy + ddy*dt;

 x = x + dx*dt;

 y = y + dy*dt;

 N = mod(N+1,10);

 if(N == 0) plot(x,y,'ro',Target,0,'bx'); end

 pause(0.01);

 end

x = x - y*(dx/dy);

Error = x - Target;

end

From the command window, you can call this function as

>> Shoot(30,60,90)

ans = -10.3829

The tennis ball hit 10.3829 meters short of the target

Hitting the target is a f(x) = 0 problem. Using California method:

Target = 50 + 50*rand;
clf

x0 = 20;
y0 = Shoot(x0, 60, Target);
x1 = 30;
y1 = Shoot(x1, 60, Target);
disp([0,x1,y1]);

for n=1:5
 x2 = x0 - (x1-x0)/(y1-y0)*y0;
 y2 = Shoot(x2, 60, Target);
 disp([n,x2,y2]);
 x0 = x1;
 y0 = y1;
 x1 = x2;
 y1 = y2;
end

This results in

 n x error
 0 30.0000 24.6189
 1.0000 24.4219 -2.1797
 2.0000 24.8756 -0.2055
 3.0000 24.9228 0.0021
 4.0000 24.9224 -0.0000
 5.0000 24.9224 -0.0000

Using Newton's method to solve for f(x) = 0

Target = 50 + 50*rand;
clf

x2 = 20;

for n=1:5
 x0 = x2;
 y0 = Shoot(x0, 60, Target);
 disp([n, x0, y0])
 x1 = x0 + 0.1;
 y1 = Shoot(x1, 60, Target);
 x2 = x0 - (x1-x0)/(y1-y0)*y0;
end

disp(y0)

The results are
 n x error
 1.0000 20.0000 -45.7577
 2.0000 32.9302 14.6581
 3.0000 30.4131 0.5809
 4.0000 30.3052 0.0020
 5.0000 30.3048 0.0000

Summary:

Integration is pretty useful. With it, you can

Determine the balance of your checking account given your deposits vs. time,

Determine the path of a robotic arm given its acceleration, and

Run animation in Matlab for bouncing balls, shooting tennis balls, and so on.

The nice thing about numerical integration is you can integrate any function you
can get into Matlab.

