
Math 105: Trigonometry

ECE 111 Introduction to ECE

Jake Glower - Lecture #3

Please visit Bison Academy for corresponding
 lecture notes, homework sets, and solutions

Objectives

Relate sin() and cos() to unit circles

Convert from rectangular to polar coordinates

Calculate the position of a robotic arm (forward kinematics)

Calculate the angles of a robotic arm (inverse kinematics)

Use the Matlab function fminsearch()

Introduction

From Wikipedia,

Trigonometry (from Greek trigonon, "triangle" and metron, "measure"[1])

is a branch of mathematics that studies relationships involving lengths and

angles of triangles. The field emerged in the Hellenistic world during the

3rd century BC from applications of geometry to astronomical studies.

Trigonometry is fundamental to electrical and computer engineering.

Power is transmitted as a 60Hz sine wave

Filters, such as subwoofers, operate on sine waves

AC motors, such as a quad-copter motor, are driven by sine waves

Analysis of systems described by differential equations (read: everything)

depends upon being able to use complex numbers - which have their origin

in sin() and cos() functions.

Likewise, trigonometry may seem like an archaic topic which deals only with

architecture and triangles. Actually, it's much more than that.

sin(), cos(), tan()

Trigonometry is the study of the unit circle.

The x-coordinate of that point is cos (θ)

The y-coordinate of that point is sin (θ)

If you extend the line from the origin to the point on the unit circle to x=1,

the length of the line to the x-axis is tan (θ)

X

Y

-1-1.5 -0.5 0.5 1.0 1.5

0.5

1.0

-0.5

-1.0

cos(q)

sin(q) tan(q)

q

It you let the angle increase with time as

θ = ωt

then you get a sine wave. In Matlab:

>> t = [0:0.01:10]';

>> w = 1;

>> x = cos(w*t);

>> y = sin(w*t);

>> plot(t,x,t,y)

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cos(x)sin(x)

Note that

cos() and sin() go between -1 and +1.

Not surprising since these are just the x and y coordinates of a unit circle

The period of cos() and sin() is (6.28 seconds).2π

The function repeats every 6.28 seconds

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cos(x)sin(x)

Period

Also note:

The default units for cos() and sin() is radians.

If you want to use degrees, the conversion is

360 degrees = radians2π

1
cycle

second
= 1Hz = 2π

rad
sec

Pretty much, anything English isn't natural.

The math works out a lot nicer if you use natural units - such as radians.

If you increase the frequency, you get a sine wave that is quicker.

A 1Hz sine wave looks like the following:
2π

rad
sec



>> t = [0:0.01:10]';

>> w = 2*pi;

>> x = cos(w*t);
>> y = sin(w*t);

>> plot(t,x,t,y)

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1Hz Sine Wave: cos(6.28t) (blue) and sin(6.28t) (red)

Amplitude, Frequency, Phase

A generalized sine wave can be written as

y(t) = a cos(ωt) + b sin (ωt)

or

y(t) = r cos(ωt + θ)

Here

r is the amplitude

 is the frequency in rad/sec, andω

 is the phase shift, also in radians.θ

The relationship between rectangular and polar form is

r2 = a2 + b2

tan (θ) =
b
a

b

a

r

q

Example,

y = 5 cos(6t − 1)

looks like the following:

>> t = [0:0.01:2]';

>> y = 5*cos(6*t-1);

>> plot(t,y);

The peak is 5 Volts

The frequency is 6 rad/sec

period =
2π

6
= 1.047 sec

The phase shift is 1 radian

The delay is




1 radian

6 rad/sec

 =

1

6
sec = 0.166 sec

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Period = 1.047s

= 360 degrees

= 2 pi radians

Delay = 1 radian

Peak = 5V

Sine Waves and Circles

What shouldn't be surprising is that if you plot cos() vs sin() you get a circle
>> x = cos(w*t);

>> y = sin(w*t);

>> plot(x,y)

It also shouldn't surprising that

cos2(t) + sin2
(t) = 1

This just says that

The radius of a circle with a radius

of one

is one

That's sort of the definition of cos()

and sin().
-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

cos(q)

sin(q)

q

Polar Coordinates

Any point, P, can be expressed

In cartesian coordinates

P = (x, y)

Or polar coordinates

P = r∠θ

The conversion is

x = r cos θ

y = r sin θ

or

r = x2 + y2

θ =atan2(y, x)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

q

x

y

(x, y)

Note: There are two arctan() functions in Matlab

atan(y/x) returns the angle from -pi/2 to +pi/2

(-90 degrees to +90 degrees)

atan2(y, x) returns the angle from -pi to +pi

(-180 degres to +180 degrees)

The problem with atan is that if both x and y are negative, the signs cancel.

To get the actual angle, you need to use atan2()

Fun with Polar Coordinates

You can create some pretty plots using polar coordinates.

The trick in Matlab is to convert these functions to cartesian corrdinates

plot(x,y) plots in cartesian coordinates

Example 1: Circles.

Trig functions are all about circles.

Both sin() and cos() plot as circles

r = sin θ

r = cos θ

Matlab Code:

q = [0:0.005:1]' * 2 * pi;

r = cos(q);

x = r .* cos(q);

y = r .* sin(q);

plot(x,y);

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r = cos(q)

r = sin(q)

Example 2: 4-Leaf Clover

r = cos (2θ)

Matlab Code:
q = [0:0.005:1]' * 2 * pi;

r = cos(2*q);

x = r .* cos(q);

y = r .* sin(q);

plot(x,y);

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Linear Spiral

r =
1

30
⋅ θ

A spiral with equal spacing

You can also make this spin

Matlab does animation pretty well

q = [0:0.005:5]' * 2 * pi;

for i=1:1000

 dq = i/100;

 r = q/30;

 x = r .* cos(q+dq);

 y = r .* sin(q+dq);

 plot(x,y);

 xlim([-1.5,1.5]);

 ylim([-1.2,1.2]);

 pause(0.01);
 end

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lissajous Figures

Another pretty shape

A staple of mad-scientists

y = sin (nθ)

x = cos θ

Add a small offset to y to make it

rotate;

Matlab Code
q = [0:0.005:1]' * 2*pi;

for i=1:1000

 dq = i/100;

 x = cos(q + dq);

 y = sin(3*q);

 plot(x,y);

 pause(0.01);

 end

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Calculations using Polar Coordinates

Useful when adding vectors

Convert to rectangular form

The the x and y coordinates add.

Example, find y:

y = 5∠200 + 8∠ − 630 + 4∠370

Convert to rectangular corrdinates

r∠θ = (r cos θ, r sin θ)
0 1 2 3 4 5 6 7 8 9 10 11 12

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

X

Y

5 ang 20 deg

8 ang -63 deg

4 ang 37 deg

In Matlab: (note: Matlab uses radians for angles, not degrees)
>> x1 = 5*cos(20*pi/180)

x1 = 4.6985

>> y1 = 5*sin(20*pi/180)

y1 = 1.7101

>> x2 = 8*cos(-63*pi/180)

x2 = 3.6319

>> y2 = 8*sin(-63*pi/180)

y2 = -7.1281

>> x3 = 4*cos(37*pi/180)
x3 = 3.1945

>> y3 = 4*sin(37*pi/180)

y3 = 2.4073

The x and y terms add:
>> X = x1+x2+x3

X = 11.5249

>> Y = y1+y2+y3

Y = -3.0107

5∠200 + 8∠ − 630 + 4∠370 = (11.5249, −3.0107)

0 1 2 3 4 5 6 7 8 9 10 11 12
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

X

Y

5 ang 20 deg

8 ang -63 deg

4 ang 37 deg

Robotics: Forward Kinematics

Given the joint angles

Find the tip position

Example:

2D robot

3 rotational links

Each link is 1m

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

X

Y

Q1

Q2

Q3

L1

L2

L3

(x1,y1)

(x2,y2)

(x3,y3)

Tip

3-Link Robot: Tip Position

Problem 1: Find the tip position

Angles = {300, 400, 500}

function [x3, y3] = RRR(q1, q2, q3)

q1 = q1 * pi/180;

q2 = q2 * pi/180;

q3 = q3 * pi/180;

L1 = 1;

L2 = 1;

L3 = 1;

x0 = 0;

y0 = 0;

x1 = L1*cos(q1);

y1 = L1*sin(q1);

x2 = x1 + L2*cos(q1+q2);

y2 = y1 + L2*sin(q1+q2);

x3 = x2 + L3*cos(q1+q2+q3);

y3 = y2 + L3*sin(q1+q2+q3);

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(x1,y1)

(x2,y2)

(x3,y3)

Link 1

Link2

Link 3

x

y

plot([x0,x1,x2,x3],[y0,y1,y2,y3],'b.-');

xlim([0,3]);

ylim([0,3]);

pause(0.01);

end

>> [Px,Py] = RRR(30,40,50)

Px = 0.7080

Py = 2.3057

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

(x1,y1)

(x2,y2)

(x3,y3)

Link 1

Link2

Link 3

x

y

Tip = (0.7080, 2.3057)

Problem 2: Determine the tip position when the joint angles are

Q1 = 30*sin(t) degrees

Q2 = 40*sin(2t) degrees

Q3 = 50*sin(3t) degrees

Solution:
t = [0:0.01:10]';

q1 = 30*sin(t);
q2 = 40*sin(2*t);

q3 = 50*sin(3*t);

Tx = 0*t;

Ty = 0*t;

for i=1:length(t)

 [Tx(i),Ty(i)] = RRR(q1(i), q2(i), q3(i));

 pause(0.01);

end

plot(Tx, Ty)

0 0.5 1 1.5 2 2.5 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Robotics: Inverse Kinematics & fminsearch()

Forward Kinematics: Given the joint angles, determine the tip position

Example: 3-link robot

x3 = cos (θ1) + cos (θ1 + θ2) + cos (θ1 + θ2 + θ3)

y3 = sin (θ1) + sin (θ1 + θ2) + sin (θ1 + θ2 + θ3)

Inverse Kinematics: Given the tip position, determine the joint angles

Not an easy problem to solve

Fortunately, there's Matlab & fminsearch()

fminsearch()

A really useful Matlab command

Finds the minimum of a function.

Example 1: Find 2

Step 1: Create a function whose minimum

is your solution.

function [J] = root2(x)

 e = x*x - 2;

 J = e^2;

 end

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

6

7

e

J

Find the minimum
of J

Step 2: Find the minimum

Option 1: Guess and guess again

>> root2(3)

ans = 49

>> root2(2)

ans = 4

>> root2(1.4)

ans = 0.0016

Option 2: Let Matlab guess for you

>> [z,e] = fminsearch('root2',4)

z = 1.4143

e = 1.5665e-008

Solution: 2 = 1.4143
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

4

5

6

7

J

x = 1.4143

Example 2: Find the shape of a hanging chain

Length = 13 meters

y(0) = 7

y(10) = 5

A hanging chain minimizes the potential energy of the chain. Since this is a

minimization problem, it's perfect for fminsearch.

0 1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

First, write a cost function which

Is passed your guess for the y-coordinate of the chain from 1 to 9

Computes the total lenngth of the chain (it should be 13 meters), and

The total potential energy of the chain

function [J] = cost_chain(z)

 % [Z,e] = fminsearch('cost_chain', 10*rand(9,1))

 % ECE 111 Lecture #3: fminsearch

 % Shape of a hanging chain that's 13 meters long

 Y = [7,z(1),z(2),z(3),z(4),z(5),z(6),z(7),z(8),z(9),5]';

 PE = sum(Y);

 L = 0;

 for i=2:11

 L = L + sqrt(1 + (Y(i) - Y(i-1))^2);

 end
 E = 13-L;

 J = PE + 100*E*E;

 plot([0:10]', Y, '.-');

 ylim([0,10]);

 pause(0.01);

end

Start with an initial guess for the shape of the chain:
>> y = 10*rand(9,1);

>> cost_chain(y)

ans = 2.8806e+004

Let fminsearch try to optimize this funciton

>> [z,e] = fminsearch('cost_chain', y)

Exiting: Maximum number of function evaluations has been exceeded

 - increase MaxFunEvals option.

 Current function value: 41.064042

Let fminsearch keep going, picking up where you left off:

>> [z,e] = fminsearch('cost_chain', z)

What you have is a numeric solution to the shape of a hanging chain.

0 1 2 3 4 5 6 7 8 9 10
2

3

4

5

6

7

8

Shape of a hanging chain found using fminsearch()

Example 3: Find the joint angles that place a RRR robot at (x=1, y=2).

x3 = 1 = cos (θ1) + cos (θ1 + θ2) + cos (θ1 + θ2 + θ3)

y3 = 2 = sin (θ1) + sin (θ1 + θ2) + sin (θ1 + θ2 + θ3)

Solution: Create a function which

Is passed the joint angles

Computes the tip position,

Computes the error in the tip position, and

Returns the sum-squared error

Cost Function:

function [J] = cost_RRR(Q)

% Tip position

Tx = 1;

Ty = 2;

[x3, y3] = RRR(Q(1), Q(2), Q(3));

pause(0.01);

Ex = x3 - Tx;
Ey = y3 - Ty;

J = Ex^2 + Ey^2;

end

Check by calling this function from the

command window:

>> cost_RRR([120,-40,-50])

ans = 0.3350

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

error

(1,2)

Optimize the function by using fminsearch()

>> [Q,e] = fminsearch('cost_RRR',[120,-40,-50])

Q = 115.8522 -53.1532 -50.4906

e = 3.4795e-013

Solution:

q1 = 115.8522 degrees

q2 = -53.1532 degrees

q3 = -50.4906 degrees

(there are other solutions)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Tip = (1, 2)

Summary

Trig is all about circles

With sine and cosine functions, you can convert to and from polar

coordinates

With sine and cosine functions, you can compute the tip position of a

robotic arm (forward kinematics), and

With fmisearch, you can compute the joint angles which place the tip

position of a robot

