
ECE 206 Circuits I
Capacitors & The Heat Equation
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Capacitors

A capacitor is a set of parallel plates1 with the capacitance equal to 

  (Farads)C = ε A

d

where

 is the dielectric constant of the material between plates  (air = ε 8.84 ⋅ 10−12)

A is the area of the capacitor, and

d is the distance between plates.

The area you need for 1 Farad with plates 1mm apart is

1 = (8.84 ⋅ 10−12)
A

0.001m

A = 113, 122, 171m2

The capacitor would need to have dimensions of 10.6km x 10.6km for a capacitance of 1 Farad.

Typically, capacitors are in the order if micro-farads.

The charge stored in a capacitor is proportional to the voltage as

Q = C V

1 http://www.electronics-tutorials.ws/
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where Q is the charge in Coulombs  (one Coulomb is equal to  electrons).  When the voltage6.242 ⋅ 1018

across a capacitor drops, the charge stored drops proportionally.  This gives the fundamental equation for

a capacitor:

I =
dQ

dt
= C

dV

dt
+ V

dC

dt

Assuming the capacitance is constant

I = C
dV

dt

This means that capacitors are integrators:

V = 1

C ∫ I ⋅ dt

In Calculus, you will be covering integration and differentiation and how to come up with a closed-form

solution to various problems.  With MATLAB (i.e. in this class) you can solve using numerical methods.

Time Response of an RC filter:  (Heat Equation)

Suppose you took the resistor network from before and added a capacitor at each node:

+

-
10V

30 40 50

150 200 250

0.01F 0.02F 0.03F

V0 V1 V2 V3

I1 I2 I3

3-Stage RC Filter

At steady-state, the voltages are all constants.  In that case, I1 = I2 = I3 = 0

I1 = 0.01F ⋅
dV1

dt
= 0

The transient (time) response, however, tells you how you get to steady-state.  If the capacitors start out

discharged, meaning

V(0) = 0

The initial temperature = 0C

Current (heat) will start flowing in from the 100V source.  This current raises the voltages (temperature)

until you reach steady-state.  
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At any time, current must balance:  the current flowing into the capacitor must equal the excess current

flowing into the node.  At node V1, for example:

I1 = 


V0−V1

100

 + 

0−V1

150

 + 

V2−V1

200



This current changes V1 as

V1 = 1

C ∫ I1 ⋅ dt

To solve this circuit, you can use CircuitLab or Matlab. Using CircuitLab, input the circuit:

Click on Run Simulation and select Transient Response
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This will show  you how the voltages change over time:

Transient voltages on V0, V1, V2, and V3:  The capacitors are charging up to their steady-state value

What's happening is this:

Initially, the capacitors are discharged (V = 0 at t = 0)

When the input turns on to 10V, a current imbalance results in current flowing into the capacitors,

charging them up.

Eventually, you reach equilibrium.  At this point, the current in equals the current out and no excess

current remains to charge up the capacitors.  At this point, you're at the steady-state solution we

found last week.

In Matlab, you can repeat this simulation.  First compute the currents I1, I2, and I3 (current out = current

in)

I1 = 


V0−V1

30

 + 

0−V1

150

 + 

V2−V1

40



I2 = 


V1−V2

40

 + 

0−V2

200

 + 

V3−V2

50



I3 = 


V2−V3

50

 + 

0−V3

250


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Note that the current is equal to C dV

dt

0.01
dV1

dt
= I1 = 


V0−V1

30

 + 

0−V1

150

 + 

V2−V1

40



0.02
dV2

dt
= I2 = 


V1−V2

40

 + 

0−V2

200

 + 

V3−V2

50



0.03
dV3

dt
= I3 = 


V2−V3

50

 + 

0−V3

250



Solve for 
dV i

dt

dV1

dt
= 3.333V0 − 6.500V1 + 2.500V2

dV2

dt
= 1.250V1 − 2.500V2 + 1.000V3

dV3

dt
= 0.667V2 − 0.800V3

Integrate to find V1..V3

V1(t) = ∫0

t dV1

dt
⋅ dτ

V2(t) = ∫0

t dV2

dt
⋅ dτ

V3(t) = ∫0

t dV3

dt
⋅ dτ

In MATLAB, start at t = 0 with all voltages equal to zero

t = 0;
dt = 0.01;

V0 = 100;

V1 = 0;
V2 = 0;
V3 = 0;

% Compute dV/dt
dV1 =  3.333*V0 - 6.500*V1 + 2.500*V2;
dV2 =  1.250*V1 - 2.500*V2 + 1.000*V3;
dV3 =  0.667*V2 - 0.800*V3;

% Integrate
 V1 = V1 + dV1*dt;
 V2 = V2 + dV2*dt;
 V3 = V3 + dV3*dt;
 

Repeat 1000 times and you have computed the voltages for 10 seconds (1000 * dt = 10 seconds) 
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A for-loop works well here

t = [];
y = [];
dt = 0.01;
 
V0 = 10;
V1 = 0;
V2 = 0;
V3 = 0;

for i=1:1000
 
   dV1 =  3.333*V0 - 6.500*V1 + 2.500*V2;
   dV2 =  1.250*V1 - 2.500*V2 + 1.000*V3;
   dV3 =  0.667*V2 - 0.800*V3;

   V1 = V1 + dV1*dt;
   V2 = V2 + dV2*dt;
   V3 = V3 + dV3*dt;

   y = [y; V1, V2, V3];

   end

t = [1:1000]' * dt;
plot(t,y);
xlabel('Time (seconds)');
ylabel('V(t)');

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

Time (seconds)

V0

V1

V2

V3

Computed voltages vs. time.  Note that these match the results from CircuitLab
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Animation in MATLAB

You can also watch the voltages change vs. time.  The trick is

Plot your function  (the node voltages in this case), and

Insert a pause(0.01) command to pause the MATLAB program and display the current temperature

t = [];
y = [];
dt = 0.01;

V0 = 10; 
V1 = 0;
V2 = 0;
V3 = 0;

for i=1:1000
 
 
   dV1 =  3.333*V0 - 6.500*V1 + 2.500*V2;
   dV2 =  1.250*V1 - 2.500*V2 + 1.000*V3;
   dV3 =  0.667*V2 - 0.800*V3;

   V1 = V1 + dV1*dt;
   V2 = V2 + dV2*dt;
   V3 = V3 + dV3*dt;

   plot([0:3], [V0; V1; V2; V3], '.-');

   ylim([0,10]);

   pause(0.01);

   end

Animation of a 10-Stage RC Filter

Take the 10-stage RC filter from last week and add a 0.1F capacitor to each node:

+

-
10V

1 1 1

100 100 100

0.1F 0.1F 0.1F

V0 V1 V2 V3

I1 I2 I3

Repeat to V10

10-Stage RC Filter.  R and C for each stage are the same.

Simulate the response for a 10V input.

Solution:  This looks like a nasty problem.  It's actually not that bad.  Each node V1 .. V9 has the same

form.  Take node V2 for example.  Without the capacitor, the currents to node V2 must add to zero:
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0 = 


V1−V2

1

 + 

V3−V2

1

 + 

0−V2

100



With the capacitor, the current sums to the current to the capacitor

IC2
= C2

dV2

dt
= 


V1−V2

1

 + 

V3−V2

1

 + 

0−V2

100



Simplifying and substituting C2 = 0.1F

dV2

dt
= 10V1 − 20.1V2 + 10V3

This same pattern holds for V1 .. V9 (with V1 using the input Vin instead of V0)

The exception is node V10 where there is only one resistor attached:

IC10
= C10

dV10

dt
= 


V9−V10

1

 + 

0−V10

100



dV10

dt
= 10V9 − 10.1V10

This results in the matrix form of the dynamics being

In Matlab, you can animate this system as:

% 10-stage RC Filter

V = zeros(10,1);
dV = zeros(10,1);
V0 = 10;
dt = 0.01;
t = 0;

while(t < 100)

   dV(1)  = 10*V0   - 20.1*V(1) + 10*V(2);
   dV(2)  = 10*V(1) - 20.1*V(2) + 10*V(3);
   dV(3)  = 10*V(2) - 20.1*V(3) + 10*V(4);
   dV(4)  = 10*V(3) - 20.1*V(4) + 10*V(5);
   dV(5)  = 10*V(4) - 20.1*V(5) + 10*V(6);
   dV(6)  = 10*V(5) - 20.1*V(6) + 10*V(7);
   dV(7)  = 10*V(6) - 20.1*V(7) + 10*V(8);
   dV(8)  = 10*V(7) - 20.1*V(8) + 10*V(9);
   dV(9)  = 10*V(8) - 20.1*V(9) + 10*V(10);
   dV(10) = 10*V(9) - 10.1*V(10);

   V = V +  dV*dt;
   t = t + dt;

   plot([0:10], [V0;V], '.-');
   ylim([0,10]);
   pause(0.01);
   end
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Eigenvalues and Eigenvectors

Suppose you want to solve the differential equation

dx

dt
= −3x

with

.x(0) = x0

In Math 166, you assume x(t) is in the form of

.x(t) = est

Then

dx

dt
= s ⋅ est = sx

Substituting into the above differential equation results in

sx = −3x

(s + 3)x = 0

Either

x(t) = 0 (the trivial solution), or

s = -3

This means x(t) is in the form of

x(t) = a ⋅ e−3t

NDSU Capacitors & the Heat Equation ECE 111

9 August 9, 2020



Plug in the initial conditions and you get

x(t) = x0 ⋅ e−3t

This also works for matrices.  If

X

.

= AX

then

X(t) = e
At
X0

or in terms of eigenvalues and eigenvectors

X(t) = a1Λ1e
λ1t + a2Λ2e

λ2t + ...a10Λ10e
λ10t

where

 is the ith eigenvector,Λ i

 is the ith eigenvalue, andλ i

 are constants determined by the initial condition.ai

Eigenvalues tell you how the system behaves

Eigenvectors tell you what behaves that way.

If X(0) is equal to an eigenvector, then only that one mode is excited.

The shape of x(t) remains the same (only one eigenvector is excited)

x(t) then goes to zero according to its eigenvalue.

If X(0) excites multiple eigenvectors, then X(t) will be the combination of all its eigenmodes.
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Example:  Take for example, the 10-stage RC filter.  In matrix form



































V

.

1

V

.

2

V

.

3

V

.

4

V

.

5

V

.

6

V

.

7

V

.

8

V

.

9

V

.

10


































=


































−20.1 10 0 0 0 0 0 0 0 0

10 −20.1 10 0 0 0 0 0 0 0

0 10 −20.1 10 0 0 0 0 0 0

0 0 10 −20.1 10 0 0 0 0 0

0 0 0 10 −20.1 10 0 0 0 0

0 0 0 0 10 −20.1 10 0 0 0

0 0 0 0 0 10 −20.1 10 0 0

0 0 0 0 0 0 10 −20.1 10 0

0 0 0 0 0 0 0 10 −20.1 10

0 0 0 0 0 0 0 0 10 −10.1



































































V1

V2

V3

V4

V5

V6

V7

V8

V9

V10


































+


































10

0

0

0

0

0

0

0

0

0

































V0

In Matlab, you can input this 10x10 system as

>> A = zeros(10,10);
>> for i=1:9
A(i,i) = -20.1;
A(i,i+1) = 10;
A(i+1,i) = 10;
end
>> A(10,10) = -10.1;
>> A

  -20.1000   10.0000         0         0         0         0         0         0         0         0
   10.0000  -20.1000   10.0000         0         0         0         0         0         0         0
         0   10.0000  -20.1000   10.0000         0         0         0         0         0         0
         0         0   10.0000  -20.1000   10.0000         0         0         0         0         0
         0         0         0   10.0000  -20.1000   10.0000         0         0         0         0
         0         0         0         0   10.0000  -20.1000   10.0000         0         0         0
         0         0         0         0         0   10.0000  -20.1000   10.0000         0         0
         0         0         0         0         0         0   10.0000  -20.1000   10.0000         0
         0         0         0         0         0         0         0   10.0000  -20.1000   10.0000
         0         0         0         0         0         0         0         0   10.0000  -10.1000

The eigenvalues of the 10x10 matrix are:

>> eig(A)

  -39.2115
  -36.6248
  -32.5698
  -27.4068
  -21.5946
  -15.6496
  -10.1000
   -5.4390
   -2.0806
   -0.3234

Eigenvalues tell you how the system behaves.

There is a fast mode which decays as

x(t) = e−39.21t
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There is a slow mode which decays as

x(t) = e−0.3234t

There are eight other modes as well

Eigenvectors tell you what behaves that way:

>> [a,b] = eig(A);
>> a

a =

   -0.1286   -0.2459    0.3412    0.4063    0.4352    0.4255    0.3780    0.2969   -0.1894    0.0650
    0.2459    0.4063   -0.4255   -0.2969   -0.0650    0.1894    0.3780    0.4352   -0.3412    0.1286
   -0.3412   -0.4255    0.1894   -0.1894   -0.4255   -0.3412   -0.0000    0.3412   -0.4255    0.1894
    0.4063    0.2969    0.1894    0.4352    0.1286   -0.3412   -0.3780    0.0650   -0.4255    0.2459
   -0.4352   -0.0650   -0.4255   -0.1286    0.4063    0.1894   -0.3780   -0.2459   -0.3412    0.2969
    0.4255   -0.1894    0.3412   -0.3412   -0.1894    0.4255    0.0000   -0.4255   -0.1894    0.3412
   -0.3780    0.3780    0.0000    0.3780   -0.3780   -0.0000    0.3780   -0.3780   -0.0000    0.3780
    0.2969   -0.4352   -0.3412    0.0650    0.2459   -0.4255    0.3780   -0.1286    0.1894    0.4063
   -0.1894    0.3412    0.4255   -0.4255    0.3412   -0.1894    0.0000    0.1894    0.3412    0.4255
    0.0650   -0.1286   -0.1894    0.2459   -0.2969    0.3412   -0.3780    0.4063    0.4255    0.4352

>> eig(A)'

  -39.2115  -36.6248  -32.5698  -27.4068  -21.5946  -15.6496  -10.1000   -5.4390   -2.0806   -0.3234

The first eigenvector (column of a) is the initial condition which decays as

V(t) = e−39.2115t

If you set the input to zero and the initial conditions to this (or a multiple of this) eigenvector, 

The shape stays the same and

The amplitude decays as e−39.21t

>> V0 = a(:,1) * 200

V0 =

  -25.7283
   49.1706
  -68.2438
   81.2533
  -87.0431
   85.0987
  -75.5929
   59.3703
  -37.8725
   13.0095

Change the previous code to
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% 10-stage RC Filter

V = [      -2.9558
            5.6490
           -7.8402
            9.3348
          -10.0000
            9.7766
           -8.6845
            6.8208
           -4.3510
            1.4946   ];

dV = zeros(10,1);

V0 = 0;

dt = 0.001;
t = 0;

while(t < 1)

   dV(1)  = 10*V0   - 20.1*V(1) + 10*V(2);
   dV(2)  = 10*V(1) - 20.1*V(2) + 10*V(3);
   dV(3)  = 10*V(2) - 20.1*V(3) + 10*V(4);
   dV(4)  = 10*V(3) - 20.1*V(4) + 10*V(5);
   dV(5)  = 10*V(4) - 20.1*V(5) + 10*V(6);
   dV(6)  = 10*V(5) - 20.1*V(6) + 10*V(7);
   dV(7)  = 10*V(6) - 20.1*V(7) + 10*V(8);
   dV(8)  = 10*V(7) - 20.1*V(8) + 10*V(9);
   dV(9)  = 10*V(8) - 20.1*V(9) + 10*V(10);
   dV(10) = 10*V(9) - 10.1*V(10);

   V = V +  dV*dt;
   t = t + dt;

   plot([0:10], [V0;V], '.-');
   ylim([-90,90]);
   pause(0.01);
   end

>> plot([0;V0])

The response at t=0, 1, and 2 seconds looks like:
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Note that

The shape of the curve remains the same as defined by the eigenvector that's excited

This mode decays very quickly as

 V(t) = V0e−39.21t

If you excite the slow eigenvector instead, the system decays very slowly.  The slow eigenvector is

>> a(:,10)/max(abs(a(:,10))*10

    1.4946
    2.9558
    4.3510
    5.6490
    6.8208
    7.8402
    8.6845
    9.3348
    9.7766
   10.0000

If this is the initial condition then the response is
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V(t) plotted every 1.00 second

Note that

The shape of the curve remains the same as defined by the eigenvector that's excited

This mode decays very slowly as

V(t) = V0e−0.33234t

If you have a random initial condition, then all ten eigenmodes will be excited.  Quickly, the fast modes

die out.  All you're left with then is the slow mode.

For example, let the initial condition be:

>> V0 = 10*rand(10,1)
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V(t) plotted every 0.1 second with a random initial condition (shown in red)

In this case

The initial condition (shown in red) excites multiple eigenvectors

After about 0.4 seconds, the fast modes die out and you're left with the slow mode.

Summary

When you have a circuit with resistors and capacitors,

It takes time for the capacitors to charge  and discharge,

You need to use differential equations to describe the behaviour of this circuit, and

Each capacitor adds a 1st-order coupled differential equation.

Furthermore, eigenvalues and eigenvectos are actually useful:

Eigenvalues tell you how the circuit will behave.

Eigenvectors tell you what behaves that way

If your initial conditions are proportional to an eigenvector, then only one eigenmode will be excited.

If your initial condition excites multiple eigenvectors (the usual case), 

The fast modes decay quickly,

Leaving the slow (dominant) mode.

This slow mode is the eigenvector associtated with the slow eigenvalue.
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