
Math 166: Calculus II

Topics

Integration

Numerical Integration
Animation in Matlab (bouncing ball)
Animation in Matlab (Shoot game)

Integration

Integration and differentiation both operate on functions:

The derivative of a function is the slope

The integral of a function is the area under the curve.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

Area 1 Area 2

The integral of y(x) is the area under the curve to the left of x

Integration is useful: with it you can

Determine the balance in your checking account given your daily deposits and withdrawals,
Determining the velocity and position of a motor given its acceleration, and

Do animation in Matlab where you determine the velocity and position of a ball as it bounces given
its acceleration.

Integration and differentiation are also related:

The integral of the derivative of a function is that function:

∫ 
dy

dx


 dx = y

The derivative of the integral of a function is that function
d

dx
(∫ y ⋅ dx) = y

The latter is the method used in Math 166 to find the integral of a function. For example, from Math 165,
you'll learn

NDSU Integration ECE 111

1 April 21, 2023

d

dx
(a sin(bx)) = ab cos(bx)

Hence

.a sin(bx) = ∫ (ab cos(bx)) ⋅ dx

Math 166 gets more difficult. The chain rule from Math 165 has

d

dx
(ab) =

da

dx
⋅ b + a ⋅

db

dx

Integration by parts is the inverse of this:

ab = ∫ 
da

dx
⋅ b + a ⋅

db

dx


 dx

In other words, if you can express a function y(x) as the sum of two terms which are equal to two other
functions in the form of

y(x) =
da

dx
⋅ b + a ⋅

db

dx

then the integral of y is ab. Finding functions a and b can be pretty tricky: Math 166 is not an easy class.

Fortunately for us, the former definition of integral leads to a much simpler numerical way to compute
the integral of a function:

The integral of a function is the area to the left (the integral at x=3 is area 1), or

The integral of a function at x=4 is area the left of x=3 (area 1), plus the area from x=3 to x=4 (area
2)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

Area 1 Area 2

The integral of a function between points a and b is the area under the curve over this interval

NDSU Integration ECE 111

2 April 21, 2023

Graphical Integration

Given a graph, y(x), you can determine the integral at point x by

Adding up the total area under the curve up to time x, or
Add to the previous area you computed at point (x-1), the area between (x-1) and (x).

For example, sketch the integral of the following curve:

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

y(x)

One way to think about this is

Assume y(x) is how much money you're depositing into your checking account.
The balance at any time is the integral: it's the net money you've added up to time x

One problem with integration is you have to know where you're starting from: your bank balance after ten
days depends upon how much money you started at. This is termed an integration constant. Assume

your bank account starts out at $0 (or the integral at x=0 is zero).

0<x<2: The area under the curve is zero. Add zero to the starting value (0)
2<x<4: The area under the curve is four. Add four to the previous total (net area = 4)

4<x<6: The area under the curve is zero. Add zero the previous total (net area = 4)
6<x<7: The area is minus three. Subtract 3 from the previous total (net area = 1)
7<x<8: The area is minus two. Subtract 2 from the previous total (net area = -3)

8<x<9: The area is minus one. Subtract 1 from the previous total (net area = -4);
9<x<10: The area is zero. The net area remains unchanged (net area = -4).

The integral is then a curve connecting these points:

NDSU Integration ECE 111

3 April 21, 2023

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

x

y

y(x)

Integral(y)

The integral of y(x) is the area to the left of x.

As a second example, in Math 166 you'll learn

∫ sin(x) ⋅ dx = −cos(x)

Graphically, this looks like the following:

0 1 2 3 4 5 6 7 8 9 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

sin(x) -cos(x)

sin(x) > 0

Integral is increasing

sin(x) < 0

Integral is decreasing

sin(x) > 0

Integral is increasing

When sin(x) > 0, its integral is increasing

When sin(x) < 0, its integral is decreasing

NDSU Integration ECE 111

4 April 21, 2023

Numerical Integration

In calculus, you learn to integrate functions by hand. With Matlab, you can integrate functions using
numerical methods.

The basis for numerical integration is the integral at point x is

The net area to the left of x, or
The net area to the left of (x-1), plus the area between x-1 and x.

The latter lets you set up a for-loop in Matlab. At each point in x, the integral of y(x) is

The previous integral you calculated, plus
The area between x-1 and x

There are several ways to calculate the area under a curve.

Euler Integration: With Euler integration, you approximate the area under the curve using rectangles.

The approach is

You sample y(x) with spacing of dx (dx = 1 in the example below)
The integral (the area under the curve) is the sum of the area of the rectangles up to time x

 ∫x
dx

y(x) ⋅ dx ≈ y(x) ⋅ dx

The good thing about Euler integration is it's simple. The bad thing about Euler integration is it's slightly
off: the rectangles miss some of the area. If you reduce the step size, dx, however, you can minimize this

error.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

dx

Area 1

Area 2

Area 3

Area 4

Area 5

Euler Integration: The area under the curve is the sum of the area of rectangles

NDSU Integration ECE 111

5 April 21, 2023

Bilinear Integration: A better form of integration is bilinear. Here, you approximate the area under the
curve with trapezoids. The procedure is similar to before:

Sample y(x) with a spacing of dx

Compute the area of each section using a trapezoid:

∫x
x+dx

y(x) ⋅ dx ≈ 


y(x+dx)+y(x)

2

 dx

From the graph below, you can see that bilinear integration is much more accurate than Euler integration.
As you reduce the step size, dx, the numerical solution gets more and more accurate as well.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

x

y

y(x)

dx

Area 1

Area 2

Area 3

Area 4

Area 5

Bilinear Integration: Approximate the area under the curve using trapezoids

Runge-Kutta Integration: An even better (but more complicated) form of integration is to approximate
y(x) with a polynomial from x to x+dx. The higher-order the polynomial, the better the approximation.

Any of these integration schemes can be implemented in Matlab. For now, let's implement bilinear
integration.

Assume you have a function y(x) in Matlab. To calculate the area to the left of x (i.e. the integral), a
for-loop is used along with the calculation:

∫a

b

y ⋅ dx ≈ 


y(b)+y(a)

2

 ⋅ (b − a)

In the following code, the area under the curve at point x is equal to

The area under the curve at point x-dx (i.e. the previous area you computed), plus
The area under the curve from x-dx to x

NDSU Integration ECE 111

6 April 21, 2023

In Matlab, a function to do this is as follows:

function [y] = Integrate(x, dy)
% function [y] = Integrate(x, dy)
% bilinear integration

npt = length(x);

y = 0*dy;

for i=2:npt
 y(i) = y(i-1) + 0.5*(dy(i) + dy(i-1)) * (x(i) - x(i-1));
end

end

Any time you write a function in Matlab, it's good practice to test this function with something where you

know the answer. For example, from differentiation

d

dx
(2 sin(3x)) = 6 cos(3x)

meaning

∫ 6 cos(3x)dx = 2 sin(3x)

Let

dy = 6 cos(3x)

y = 2 sin(3x)

Check in Matlab:

>> x = [0:0.1:4]';
>> y = 2*sin(3*x);
>> dy = 6*cos(3*x);
>> plot(x,y,'r',x,Integrate(x,dy),'b.');

Actual integral of 6cos(3x) (red) and numerical solution (blue dots)

The computed values match the actual integral - meaning I'm fairly confident the subroutine is correct.

NDSU Integration ECE 111

7 April 21, 2023

One huge advantage of numerical integration is you can find the integral of functions which are really

hard to do by hand. For example, determine the integral of

y = 


cos(3x)

x2+1




z = ∫ y ⋅ dx

As long as you can put y(x) into Matlab, you can find its integral. In Matlab:

>> dx = 0.01;
>> x = [-4:dx:4]';
>> y = cos(3*x) ./ (x.^2 + 1);
>> z = Integrate(x,y);
>> plot(x,y,'b',x,z,'r')

-4 -3 -2 -1 0 1 2 3 4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y(x)

z(x)

y(x) (blue) and its integral (red)

Note that with Matlab, I can find the integral of y(x) even if I can't find the integral by hand.

Path Planning using Integration

In our previous lecture, differentiation was used to determine the velocity and acceleration associated with
a given path of a robot arm from point a to b. With integration, you can go the other way:

Given the acceleration (i.e. the current to the motor), determine

The implied velocity (1st integral), and
The implied position (2nd integral).

NDSU Integration ECE 111

8 April 21, 2023

Assume the acceleration is a constant

y =





+1 0 < t < 1

−1 1 < t < 2

The velocity and position can be found using integration. Each of these is scaled by a constant so that the
final position is one

>> x = [-1:0.01:3]' + 1e-6;
>> ddy = 1*(x>0).*(x<1) -1*(x>1).*(x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> max(y)
 1.0000
>> plot(x,y,x,dy,x,ddy)

Since y(x) goes from 0 to 1, no scaling is needed

-1 0 1 2 3
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

Position

Velocity

Acceleration

Path for a robotic arm with constant acceleration

This path has jump discontinuities in acceleration. If you want to avoid that, you could use the following:

>> ddy = sin(x*pi) .* (x>0) .* (x<2);
>> dy = Integrate(x,ddy);
>> y = Integrate(x,dy);
>> max(y)
 0.6366

>> ddy = ddy / 0.6366;
>> dy = dy / 0.6366;
>> y = y / 0.6366;
>> plot(x,y,x,dy,x,ddy)

NDSU Integration ECE 111

9 April 21, 2023

-1 0 1 2 3
-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

x

position

Velocity

Acceleration

Path Planning by specifying the acceleration (without jump discontinuities)

Integration and Noise

Typically, students prefer differentiation over integration. With differentiation, you simply apply a set of
rules to find the derivative. With integration, you often have to apply several tricks to get the function
into a form that you can integrate.

In practice, integration is preferred over differentiation. Almost all signals have noise. This can be caused
by wires picking up radio signals, browning motion (electrons moving about creating small voltages), etc.
When you differentiate a signal which has noise, you amplify the noise. When you integrate a signal with

noise, you clean up the noise.

For example, if y(t) is a sine wave with gaussian white noise with a standard deviation of 0.1V, the signal
looks like the following:

>> t = [0:0.001:10]';
>> y = sin(t) + 0.1*randn(10001,1);
>> plot(t,y)

NDSU Integration ECE 111

10 April 21, 2023

If you differentiate this signal, you amplify the noise:

>> plot(t,derivative(t,y))

Derivative of y(t): differentiation amplifies noise

If you integrate this signal, you remove the noise

>> plot(t,y,'b',t,Integrate(t,y),'r')

y(t) (blue) and its integral (red). Integration cleans up a signal.

Likewise, in practice, differentiation is avoided if at all possible. It's better to integrate than it is to
differentiate.

NDSU Integration ECE 111

11 April 21, 2023

Fun with Integration: Bouncing Ball

With numerical integration, you can do all sorts of simulations and animations. For example, simulate a
ball bouncing in a box. Assume

Gravity is pulling down in the -y direction

If the ball hits the floor (y<0), it bounces up (the velocity in the y direction becomes positive)
If the ball hits the right wall (x>3), the ball bounces left (the x-velocity becomes negative)
If the ball hits the left wall (x<0), the ball bounces right (the y-velocity becomes positive)

A Matlab script to do this is as follows

% Bouncing Ball
% Initial Conditions
x = 0;
y = 1;
dx = 1;
dy = 0;
t = 0;
dt = 0.01;

while(t<10)
 ddx = 0;
 ddy = -9.8;

 dx = dx + ddx*dt;
 dy = dy + ddy*dt;

 if(y<0) dy = abs(dy); end
 if(x>3) dx = -abs(dx); end
 if(x<0) dx = abs(dx); end

 x = x + dx*dt;
 y = y + dy*dt;

 plot(x,y,'ro');
 xlim([0,3]);
 ylim([0,3]);
 pause(0.01);
end

NDSU Integration ECE 111

12 April 21, 2023

Fun with Integration: Shoot Game

Another example is to simulate the launch of a tennis ball to hit a target. Call the function by specifying

The initial velocity in m/s
The initial angle in degrees, and

The target position in meters.

Use numerical integration similar to the bouncing ball to calculate the velocity and position of the tennis
ball at each time.

When the tennis ball hits the ground (y=0), return how far away you were from the target.

A Matlab function do to this:

function [Error] = Shoot(Speed, Angle, Target)

 x = 0;
 y = 0;
 dx = Speed * cos(Angle*pi/180);
 dy = Speed * sin(Angle*pi/180);
 dt = 0.01;

 N = 0;

 plot(Target,0,'bx');
 xlim([0,120]);
 ylim([0,70]);
 hold on

 while(y >= 0)
 ddx = 0;
 ddy = -9.8;
 dx = dx + ddx*dt;
 dy = dy + ddy*dt;
 x = x + dx*dt;
 y = y + dy*dt;

 N = mod(N+1,10);
 if(N == 0) plot(x,y,'ro',Target,0,'bx'); end
 pause(0.01);
 end

x = x + y*(dx/dy);
Error = x - Target;

end

From the command window, you can call this function as

>> Shoot(30,60,90)

ans = -10.3829

The tennis ball hit 10.3829 meters short of the target

NDSU Integration ECE 111

13 April 21, 2023

Hitting the target is a f(x) = 0 problem. Using California method:

Target = 50 + 50*rand;
clf

x0 = 20;
y0 = Shoot(x0, 60, Target);
x1 = 30;
y1 = Shoot(x1, 60, Target);
disp([0,x1,y1]);

for n=1:5
 x2 = x0 - (x1-x0)/(y1-y0)*y0;
 y2 = Shoot(x2, 60, Target);
 disp([n,x2,y2]);
 x0 = x1;
 y0 = y1;
 x1 = x2;
 y1 = y2;
end

This results in

 n x error
 0 30.0000 24.6189
 1.0000 24.4219 -2.1797
 2.0000 24.8756 -0.2055
 3.0000 24.9228 0.0021
 4.0000 24.9224 -0.0000
 5.0000 24.9224 -0.0000

California Method

NDSU Integration ECE 111

14 April 21, 2023

You can also use Newton's method to solve for f(x) = 0

Target = 50 + 50*rand;
clf

x2 = 20;

for n=1:5
 x0 = x2;
 y0 = Shoot(x0, 60, Target);
 disp([n, x0, y0])
 x1 = x0 + 0.1;
 y1 = Shoot(x1, 60, Target);
 x2 = x0 - (x1-x0)/(y1-y0)*y0;
end

disp(y0)

The results are

 n x error
 1.0000 20.0000 -45.7577
 2.0000 32.9302 14.6581
 3.0000 30.4131 0.5809
 4.0000 30.3052 0.0020
 5.0000 30.3048 0.0000

Tennis Ball Trajectory using Newton's Method

NDSU Integration ECE 111

15 April 21, 2023

Summary:

Integration is pretty useful. With it, you can

Determine the balance of your checking account given your deposits vs. time,
Determine the path of a robotic arm given its acceleration, and

Run animation in Matlab for bouncing balls, shooting tennis balls, and so on.

The nice thing about numerical integration is you can integrate any function you can get into Matlab.

NDSU Integration ECE 111

16 April 21, 2023

NDSU Integration ECE 111

17 April 21, 2023

